×

An \(h-p\) version of the continuous Petrov-Galerkin finite element method for nonlinear Volterra integro-differential equations. (English) Zbl 1327.65147

Summary: We present an \(h-p\) version of the continuous Petrov-Galerkin finite element method for nonlinear Volterra integro-differential equations. We derive a priori error bounds in the \(L^2\)- and \(H^1\)-norm that are explicit in the time steps, the approximation orders, and the regularity of the exact solution. Numerical experiments are provided to illustrate the theoretical results.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65R20 Numerical methods for integral equations
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004) · Zbl 1059.65122 · doi:10.1017/CBO9780511543234
[2] Brunner, H.: Implicit Runge-Kutta methods of optimal order for Volterra integro-differential equations. Math. Comput. 42, 95-109 (1984) · Zbl 0543.65092 · doi:10.1090/S0025-5718-1984-0725986-6
[3] Brunner, H.: Polynomial spline collocation methods for Volterra integrodifferential equations with weakly singular kernels. IMA J. Numer. Anal. 6, 221-239 (1986) · Zbl 0634.65142 · doi:10.1093/imanum/6.2.221
[4] Brunner, H., Schötzau, D.: \[hp\] hp-discontinuous Galerkin time-stepping for Volterra integrodifferential equations. SIAM J. Numer. Anal. 44, 224-245 (2006) · Zbl 1116.65127 · doi:10.1137/040619314
[5] Brunner, H., van der Houwen, P.J.: The Numerical Solution of Volterra Equations, CWI Monographs 3. North-Holland, Amsterdam (1986) · Zbl 0611.65092
[6] Chen, Y.P., Li, X.J., Tang, T.: A note on Jacobi spectral-collocation methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Math. 31, 47-56 (2013) · Zbl 1289.65284 · doi:10.4208/jcm.1208-m3497
[7] Demkowicz, L., Oden, J.T.: An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable. J. Comput. Phys. 67, 188-213 (1986) · Zbl 0601.65081 · doi:10.1016/0021-9991(86)90121-X
[8] Fakhar-Izadi, F., Dehghan, M.: The spectral methods for parabolic Volterra integro-differential equations. J. Comput. Appl. Math. 235, 4032-4046 (2011) · Zbl 1219.65161 · doi:10.1016/j.cam.2011.02.030
[9] Griffiths, D.F., Lorenz, J.: An analysis of the Petrov-Galerkin finite element method. Comput. Methods Appl. Mech. Eng. 14, 39-64 (1978) · Zbl 0384.76065 · doi:10.1016/0045-7825(78)90012-9
[10] Guo, B.Q.: The \[p\] p and h-p Finite Element Analysis: Theory, Algorithm and Computation, Lecture Notes, Department of Mathematics. University of Manitoba, Canada (2004) · Zbl 0907.65142
[11] Hu, Q.Y.: Stieltjes derivatives and \[\beta\] β-polynomial spline collocation for Volterra integrodifferential equations with singularities. SIAM J. Numer. Anal. 33, 208-220 (1996) · Zbl 0851.65098 · doi:10.1137/0733012
[12] Hu, Q.Y.: Geometric meshes and their application to Volterra integro-differential equations with singularities. IMA J. Numer. Anal. 18, 151-164 (1998) · Zbl 0907.65142 · doi:10.1093/imanum/18.1.151
[13] Huang, C., Tang, T., Zhang, Z.M.: Supergeometric convergence of spectral collocation methods for weakly singular Volterra and Fredholm integral equations with smooth solutions. J. Comput. Math. 29, 698-719 (2011) · Zbl 1265.65269 · doi:10.4208/jcm.1110-m11si06
[14] Jiang, Y.J., Ma, J.T.: Spectral collocation methods for Volterra-integro differential equations with noncompact kernels. J. Comput. Appl. Math. 244, 115-124 (2013) · Zbl 1263.65134 · doi:10.1016/j.cam.2012.10.033
[15] Li, X.J., Tang, T., Xu, C.J.: Parallel in time algorithm with spectral-subdomain enhancement for Volterra integral equations. SIAM J. Numer. Anal. 51, 1735-1756 (2013) · Zbl 1291.65382 · doi:10.1137/120876241
[16] Lin, T., Lin, Y.P., Luo, P., Rao, M., Zhang, S.H.: Petrov-Galerkin methods for nonlinear Volterra integro-differential equations. Dyn. Contin. Discrete Impuls. Syst. Ser. B 8, 405-426 (2001) · Zbl 0998.65135
[17] Lin, T., Lin, Y.P., Rao, M., Zhang, S.H.: Petrov-Galerkin methods for linear Volterra integro-differential equations. SIAM J. Numer. Anal. 38, 937-963 (2000) · Zbl 0983.65138 · doi:10.1137/S0036142999336145
[18] Mustapha, K.: A superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels. Math. Comput. 82, 1987-2005 (2013) · Zbl 1273.65198 · doi:10.1090/S0025-5718-2013-02689-0
[19] Mustapha, K., Brunner, H., Mustapha, H., Schötzau, D.: An \[hp\] hp-version discontinuous Galerkin method for integro-differential equations of parabolic type. SIAM J. Numer. Anal. 49, 1369-1396 (2011) · Zbl 1230.65143 · doi:10.1137/100797114
[20] Schwab, C.: p- and hp- Finite Element Methods. Oxford University Press, New York (1998) · Zbl 0910.73003
[21] Shen, J., Wang, L.L.: Legendre and Chebyshev dual-Petrov-Galerkin methods for hyperbolic equations. Comput. Methods Appl. Mech. Eng. 196, 3785-3797 (2007) · Zbl 1173.65342 · doi:10.1016/j.cma.2006.10.031
[22] Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13, 93-99 (1993) · Zbl 0765.65126 · doi:10.1093/imanum/13.1.93
[23] Tang, T.: Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer. Math. 61, 373-382 (1992) · Zbl 0741.65110 · doi:10.1007/BF01385515
[24] Tao, X., Xie, Z.Q., Zhou, X.J.: Spectral Petrov-Galerkin methods for the second kind Volterra type integro-differential equations. Numer. Math. Theory Methods Appl. 4, 216-236 (2011) · Zbl 1249.65291
[25] Wei, Y.X., Chen, Y.P.: Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions. Adv. Appl. Math. Mech. 4, 1-20 (2012) · Zbl 1262.45005
[26] Wihler, T.P.: An a priori error analysis of the \[hp\] hp-version of the continuous Galerkin FEM for nonlinear initial value problems. J. Sci. Comput. 25, 523-549 (2005) · Zbl 1101.65085 · doi:10.1007/s10915-004-4796-2
[27] Xu, D.: Stability of the difference type methods for linear Volterra equations in Hilbert spaces. Numer. Math. 109, 571-595 (2008) · Zbl 1166.65401 · doi:10.1007/s00211-008-0151-0
[28] Xu, D.: Uniform \[l^1\] l1 behaviour in a second-order difference-type method for a linear Volterra equation with completely monotonic kernel I: stability. IMA J. Numer. Anal. 31, 1154-1180 (2011) · Zbl 1227.65136 · doi:10.1093/imanum/drq026
[29] Yi, L.J., Guo, B.Q.: An \[h\] h-\[p\] p Petrov-Galerkin finite element method for linear Volterra integro-differential equations. Sci. China Math. 57, 2285-2300 (2014) · Zbl 1311.65172
[30] Yuan, W., Tang, T.: The numerical analysis of implicit Runge-Kutta methods for a certain nonlinear integro-differential equation. Math. Comput. 54, 155-168 (1990) · Zbl 0687.65129 · doi:10.1090/S0025-5718-1990-0979942-6
[31] Zhang, S.H., Lin, T., Lin, Y.P., Rao, M.: Extrapolation and a-posteriori error estimators of Petrov-Galerkin methods for non-linear Volterra integro-differential equations. J. Comput. Math. 19, 407-422 (2001) · Zbl 0989.65151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.