×

Is \(2k\)-conjecture valid for finite volume methods? (English) Zbl 1327.65216

Summary: This paper is concerned with superconvergence properties of a class of finite volume methods of arbitrary order over rectangular meshes. Our main result is to prove the \(2k\)-conjecture: at each vertex of the underlying rectangular mesh, the bi-\(k\) degree finite volume solution approximates the exact solution with an order \( O(h^{2k})\), where \(h\) is the mesh size. As byproducts, superconvergence properties for finite volume discretization errors at Lobatto and Gauss points are also obtained. All theoretical findings are confirmed by numerical experiments.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

References:

[1] R. A. Adams, {\it Sobolev Spaces}, Academic Press, New York, 1975. · Zbl 0314.46030
[2] I. Babuška, T. Strouboulis, C. S. Upadhyay, and S. K. Gangaraj, {\it Computer-based proof of the existence of superconvergence points in the finite element method: Superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations}, Numer. Methods Partial Differential Equations, 12 (1996), pp. 347-392. · Zbl 0854.65089
[3] R. E. Bank and D. J. Rose, {\it Some error estimates for the box method}, SIAM J. Numer. Anal., 24 (1987), pp. 777-787. · Zbl 0634.65105
[4] T. Barth and M. Ohlberger, {\it Finite volume methods: Foundation and analysis}, in Encyclopedia of Computational Mechanics, Vol. 1, John Wiley & Sons, Chichester, England, 2004, pp. 439-474.
[5] J. Bramble and A. Schatz, {\it High order local accuracy by averaging in the finite element method}, Math. Comp., 31 (1997), pp. 94-111. · Zbl 0353.65064
[6] Z. Cai, {\it On the finite volume element method}, Numer. Math., 58 (1991), pp. 713-735. · Zbl 0731.65093
[7] Z. Cai, J. Douglas, and M. Park, {\it Development and analysis of higher order finite volume methods over rectangles for elliptic equations}, Adv. Comput. Math., 19 (2003), pp. 3-33. · Zbl 1020.65087
[8] W. Cao, Z. Zhang, and Q. Zou, {\it Superconvergence of any order finite volume schemes for 1D general elliptic equations}, J. Sci. Comput., 56 (2013), pp. 566-590. · Zbl 1276.65044
[9] W. Cao, Z. Zhang, and Q. Zou, {\it Finite volume superconvergence approximation for one-dimensional singularly perturbed problems}, J. Comput. Math., 31 (2013), pp. 488-508. · Zbl 1299.65152
[10] C. Chen, {\it Structure Theorey of Superconvergence of Finite Elements}, Hunan Science and Technology Press, Hunan, China, 2001 (in Chinese).
[11] C. Chen and Y. Huang, {\it High accuracy theory of finite elements}, Hunan Science and Technology Press, Hunan, China, 1995 (in Chinese).
[12] C. Chen and S. Hu, {\it The highest order superconvergence for bi-\(k\) degree rectangular elements at nodes: A proof of 2k-conjecture}, Math. Comp., 82 (2013), pp. 1337-1355. · Zbl 1276.65067
[13] J. Douglas and T. Dupont, {\it Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces}, Numer. Math., 22 (1974), pp. 99-109. · Zbl 0331.65051
[14] L. Chen, {\it A new class of high order finite volume methods for second order elliptic equations}, SIAM J. Numer. Anal., 47 (2010), pp. 4021-4043. · Zbl 1261.65109
[15] Z. Chen, J. Wu, and Y. Xu, {\it Higher-order finite volume methods for elliptic boundary value problems}, Adv. Comput. Math., 37 (2012), pp. 191-253. · Zbl 1266.65180
[16] P. J. Davis and P. Rabinowitz, {\it Methods of Numerical Integration}, 2nd ed., Academic Press, Boston, 1984. · Zbl 0537.65020
[17] Ph. Emonot, {\it Methods de volums elements finis: Applications aux equations de Navier-Stokes et resultats de convergence}, Thésis, Claude Bernard University Lyon 1, Villeurbanne, France, 1992.
[18] R. E. Ewing, T. Lin, and Y. Lin, {\it On the accuracy of the finite volume element method based on piecewise linear polynomials}, SIAM J. Numer. Anal., 39 (2002), pp. 1865-1888. · Zbl 1036.65084
[19] R. Eymard, T. Gallouet, and R. Herbin, {\it Finite volume methods}, in Handbook of Numerical Analysis, Vol. VII, P. G. Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam, 2000, pp. 713-1020. · Zbl 0981.65095
[20] M. Kr̆iz̆ek and P. Neittaanmäki, On superconvergence techniques. {\it Acta Appl. Math.}, 9 (1987), pp. 175-198. · Zbl 0624.65107
[21] R. Li, Z. Chen, and W. Wu, {\it The Generalized Difference Methods for Partial Differential Equations}, Marcel Dekker, New York, 2000. · Zbl 0940.65125
[22] C. Ollivier-Gooch and M. Altena, {\it A high-order-accurate unconstructed mesh finite-volume scheme for the advection-diffusion equation}, J. Comput. Phys., 181 (2002), pp. 729-752. · Zbl 1178.76251
[23] M. Plexousakis and G. E. Zouraris, {\it On the construction and analysis of high order locally conservative finite volume-type methods for one-dimensional elliptic problems}, SIAM J. Numer. Anal., 42 (2004), pp. 1226-1260. · Zbl 1083.65074
[24] A. H. Schatz, I. H. Sloan, and L. B. Wahlbin, {\it Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point}, SIAM J. Numer. Anal., 33 (1996), pp. 505-521. · Zbl 0855.65115
[25] E. Süli, {\it Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes}, SIAM J. Numer. Anal., 28 (1991), pp. 1419-1430. · Zbl 0802.65104
[26] V. Thomee, {\it High order local approximation to derivatives in the finite element method}, Math. Comp., 31 (1997), pp. 652-660. · Zbl 0367.65055
[27] L. B. Wahlbin, {\it Superconvergence in Galerkin Finite Element Methods}, Lecture Notes in Math. 1605, Springer, Berlin, 1995. · Zbl 0826.65092
[28] J. Xu and Q. Zou, {\it Analysis of linear and quadratic simplicial finite volume methods for elliptic equations}, Numer. Math., 111 (2009), pp. 469-492. · Zbl 1169.65110
[29] Z. Zhang and Q. Zou, {\it A family of finite volume schemes of any arbitrary order on rectangular meshes}, J. Sci. Comput., 58 (2014), pp. 308-330. · Zbl 1296.65140
[30] J. Zhou and Q. Lin, {\it \(Bi-p\) conjecture of superconvergence-weighted norm estimates of discrete Green funtion}, Math. Practice Theory, 37 (2007), pp. 87-94 (in Chinese). · Zbl 1164.65484
[31] Q. Zhu and Q. Lin, {\it Superconvergence Theory of the Finite Element Method}, Hunan Science and Technology Press, Hunan, China, 1989 (in Chinese).
[32] Q. Zou, {\it Hierarchical error estimates for finite volume approximation solution of elliptic equations}, Appl. Numer. Math., 60 (2010), pp. 142-153. · Zbl 1191.65145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.