×

Algebro-geometric solutions to the lattice potential modified Kadomtsev-Petviashvili equation. (English) Zbl 1511.37090

Summary: Algebro-geometric solutions of the lattice potential modified Kadomtsev-Petviashvili (lpmKP) equation are constructed. A Darboux transformation of the Kaup-Newell spectral problem is employed to generate a Lax triad for the lpmKP equation, as well as to define commutative integrable symplectic maps which generate discrete flows of eigenfunctions. These maps share the same integrals with the finite-dimensional Hamiltonian system associated to the Kaup-Newell spectral problem. We investigate asymptotic behaviors of the Baker-Akhiezer functions and obtain their expression in terms of Riemann theta function. Finally, algebro-geometric solutions for the lpmKP equation are reconstructed from these Baker-Akhiezer functions.

MSC:

37K60 Lattice dynamics; integrable lattice equations
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
39A36 Integrable difference and lattice equations; integrability tests

References:

[1] Adler, V. E.; Bobenko, A. I.; Suris, Y. B., Classification of integrable equations on quad-graphs. The consistency approach, Commun. Math. Phys., 233, 513-543 (2003) · Zbl 1075.37022 · doi:10.1007/s00220-002-0762-8
[2] Adler, V. E.; Bobenko, A. I.; Suris, Y. B., Classification of integrable discrete equations of octahedron type, Int. Math. Res. Not., 2012, 1822-1889 (2012) · Zbl 1277.39006 · doi:10.1093/imrn/rnr083
[3] Babelon, O.; Bernard, D.; Talon, M., Introduction to Classical Integrable Systems (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1045.37033
[4] Belokolos, E. D.; Bobenko, A. I.; Enolskij, V. Z.; Its, A. R.; Matveev, V. B., Algebro-Geometric Approach to Nonlinear Integrable Equations (1994), Berlin: Spinger, Berlin · Zbl 0809.35001
[5] Bobenko, A.; Suris, Y., Integrable systems on quad-graphs, Int. Math. Res. Not., 2002, 573-611 (2002) · Zbl 1004.37053 · doi:10.1155/s1073792802110075
[6] Bruschi, M.; Ragnisco, O.; Santini, P. M.; Tu, G-Z, Integrable symplectic maps, Physica D, 49, 273-294 (1991) · Zbl 0734.58023 · doi:10.1016/0167-2789(91)90149-4
[7] Butler, S., Multidimensional inverse scattering of integrable lattice equations, Nonlinearity, 25, 1613-1634 (2012) · Zbl 1251.39003 · doi:10.1088/0951-7715/25/6/1613
[8] Cao, C., Nonlinearization of the Lax system for AKNS hierarchy, Sci. China A, 33, 528-536 (1990) · Zbl 0714.58026
[9] Cao, C.; Xu, X., A finite genus solution of the H1 model, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1234.35216 · doi:10.1088/1751-8113/45/5/055213
[10] Cao, C.; Xu, X.; Zhang, D-j; Nijhoff, F. W.; Shi, Y.; Zhang, D. J., On the lattice potential KP equation, Asymptotic, Algebraic and Geometric Aspects of Integrable Systems (2020), Berlin: Springer, Berlin
[11] Cao, C.; Yang, X., A (2 + 1)-dimensional derivative Toda equation in the context of the Kaup-Newell spectral problem, J. Phys. A: Math. Theor., 41 (2008) · Zbl 1151.35092 · doi:10.1088/1751-8113/41/2/025203
[12] Cao, C.; Zhang, G., A finite genus solution of the Hirota equation via integrable symplectic maps, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1248.37062 · doi:10.1088/1751-8113/45/9/095203
[13] Cao, C.; Zhang, G., Integrable symplectic maps associated with the ZS-AKNS spectral problem, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1387.37069 · doi:10.1088/1751-8113/45/26/265201
[14] Cao, C-W; Zhang, G-Y, Lax pairs for discrete integrable equations via Darboux transformations, Chin. Phys. Lett., 29 (2012) · doi:10.1088/0256-307x/29/5/050202
[15] Chen, D-y, k-constraint for the modified Kadomtsev-Petviashvili system, J. Math. Phys., 43, 1956-1965 (2002) · Zbl 1059.37050 · doi:10.1063/1.1446665
[16] Chen, K.; Deng, X.; Zhang, D-j, Symmetry constraint of the differential-difference KP hierarchy and a second discretization of the ZS-AKNS system, J. Nonlinear Math. Phys., 24, 18-35 (2017) · Zbl 1420.35288 · doi:10.1080/14029251.2017.1418051
[17] Chen, K.; Zhang, C.; Zhang, D-j, Squared eigenfunction symmetry of the D_ΔmKP hierarchy and its constraint, Stud. Appl. Math., 147, 752-791 (2021) · Zbl 1487.35340 · doi:10.1111/sapm.12399
[18] Cheng, Y.; Li, Y-s, The constraint of the Kadomtsev-Petviashvili equation and its special solutions, Phys. Lett. A, 157, 22-26 (1991) · doi:10.1016/0375-9601(91)90403-u
[19] Dickson, R.; Gesztesy, F.; Unterkofler, K., Algebro-geometric solutions of the Boussinesq hierarchy, Rev. Math. Phys., 11, 823-879 (1999) · Zbl 0971.35065 · doi:10.1142/s0129055x9900026x
[20] Dubrovin, B. A., Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials, Funct. Anal. Appl., 9, 215-223 (1975) · Zbl 0358.35022 · doi:10.1007/bf01078183
[21] Dubrovin, B. A.; Novikov, S. P., Periodic and conditionally periodic analogs of the many soliton solutions of the Korteweg-de Vries equation, Sov. Phys. - JETP, 40, 1058-1063 (1975)
[22] Faddeev, L. D.; Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons (1987), Berlin: Springer, Berlin · Zbl 0632.58004
[23] Farkas, H. M.; Kra, I., Riemann Surfaces (1992), New York: Springer, New York · Zbl 0764.30001
[24] Geng, X.; Wu, L.; He, G., Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions, Physica D, 240, 1262-1288 (2011) · Zbl 1223.37093 · doi:10.1016/j.physd.2011.04.020
[25] Geng, X.; Wu, L.; He, G., Quasi-periodic solutions of the Kaup-Kupershmidt hierarchy, J. Nonlinear Sci., 23, 527-555 (2013) · Zbl 1309.37070 · doi:10.1007/s00332-012-9160-3
[26] Geng, X.; Zhai, Y.; Dai, H. H., Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy, Adv. Math., 263, 123-153 (2014) · Zbl 1304.37046 · doi:10.1016/j.aim.2014.06.013
[27] Gerdjikov, V. S.; Vilasi, G.; Yanovski, A. B., Integrable Hamiltonian Hierarchies (2008), Berlin: Springer, Berlin · Zbl 1167.37001
[28] Gesztesy, F.; Holden, H., Soliton Equations and Their Algebro-Geometric Solutions: (1 + 1)-Dimensional Continuous Models (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1061.37056
[29] Gesztesy, F.; Holden, H.; Michor, J.; Teschl, G., Soliton Equations and Their Algebro-Geometric Solutions: (1 + 1)-Dimensional Discrete Models, vol 2 (2009), Cambridge: Cambridge University Press, Cambridge
[30] Griffiths, J. P.; Harris, J., Principles of Algebraic Geometry (1978), New York: Wiley, New York · Zbl 0408.14001
[31] Hietarinta, J.; Joshi, N.; Nijhoff, F. W., Discrete Systems and Integrability (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1362.37130
[32] Hietarinta, J.; Zhang, D-j, Soliton solutions for ABS lattice equations: II. Casoratians and bilinearization, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1184.35276 · doi:10.1088/1751-8113/42/40/404006
[33] Hietarinta, J.; Zhang, D-j; Euler, N.; Zhang, D. J., Discrete Boussinesq-type equations, Nonlinear Systems and Their Remarkable Mathematical Structures, vol 3 (2021), Boca Raton, FL: CRC Press, Boca Raton, FL
[34] Its, A. R.; Matveev, V. B., Hill operators with a finite number of lacunae, Funct. Anal. Appl., 9, 65-66 (1975) · Zbl 0318.34038 · doi:10.1007/bf01078185
[35] Its, A. R.; Matveev, V. B., Schrödinger operators with the finite-band spectrum and the N-soliton solutions of the Korteweg-de Vries equation, Theor. Math. Phys., 23, 343-355 (1975) · doi:10.1007/bf01038218
[36] Kaup, D. J.; Newell, A. C., On the Coleman correspondence and the solution of the massive Thirring model, Lett. Nuovo Cimento, 20, 325-331 (1977) · doi:10.1007/bf02783605
[37] Kaup, D. J.; Newell, A. C., An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19, 798-801 (1978) · Zbl 0383.35015 · doi:10.1063/1.523737
[38] Khanizadeh, F.; Mikhailov, A. V.; Wang, J. P., Darboux transformations and recursion operators for differential-difference equations, Theor. Math. Phys, 177, 1606-1654 (2013) · Zbl 1301.37041 · doi:10.1007/s11232-013-0124-z
[39] Konopelchenko, B.; Strampp, W., New reductions of the Kadomtsev-Petviashvili and two-dimensional Toda lattice hierarchies via symmetry constraints, J. Math. Phys., 33, 3676-3686 (1992) · Zbl 0762.35103 · doi:10.1063/1.529862
[40] Konopelchenko, B.; Sidorenko, J.; Strampp, W., (1 + 1)-dimensional integrable systems as symmetry constraints of (2 + 1)-dimensional systems, Phys. Lett. A, 157, 17-21 (1991) · doi:10.1016/0375-9601(91)90402-t
[41] Konstantinou-Rizos, S.; Mikhailov, A. V.; Xenitidis, P., Reduction groups and related integrable difference systems of nonlinear Schrödinger type, J. Math. Phys., 56 (2015) · Zbl 1328.35213 · doi:10.1063/1.4928048
[42] Krichever, I. M., Methods of algebraic geometry in the theory of non-linear equations, Russ. Math. Surv., 32, 185-213 (1977) · Zbl 0386.35002 · doi:10.1070/rm1977v032n06abeh003862
[43] Levi, D., Nonlinear differential-difference equations as Bäcklund transformations, J. Phys. A: Math. Gen., 14, 1083-1098 (1981) · Zbl 0465.35081 · doi:10.1088/0305-4470/14/5/028
[44] Levi, D.; Benguria, R., Bäcklund transformations and nonlinear differential-difference equations, Proc. Natl Acad. Sci. USA, 77, 5025-5027 (1980) · Zbl 0453.35072 · doi:10.1073/pnas.77.9.5025
[45] Matveev, V. B., 30 years of finite-gap integration theory, Phil. Trans. R. Soc. A, 366, 837-875 (2008) · Zbl 1153.37419 · doi:10.1098/rsta.2007.2055
[46] Miwa, T., On Hirota’s difference equations, Proc. Japan Acad. A, 58, 9-12 (1982) · Zbl 0508.39009 · doi:10.3792/pjaa.58.9
[47] Mumford, D., Tata Lectures on Theta I (1983), Boston, MA: Birkhäuser, Boston, MA · Zbl 0509.14049
[48] Nijhoff, F. W., Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A, 297, 49-58 (2002) · Zbl 0994.35105 · doi:10.1016/s0375-9601(02)00287-6
[49] Nijhoff, F. W.; Atkinson, J.; Hietarinta, J., Soliton solutions for ABS lattice equations: I. Cauchy matrix approach, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1184.35281 · doi:10.1088/1751-8113/42/40/404005
[50] Nijhoff, F. W.; Capel, H.; Wiersma, G.; Martini, R., Integrable lattice systems in two and three dimensions, Geometric Aspects of the Einstein Equations and Integrable Systems (1985), Berlin: Springer, Berlin
[51] Nijhoff, F. W.; Capel, H. W.; Wiersma, G. L.; Quispel, G. R W., Bäcklund transformations and three-dimensional lattice equations, Phys. Lett. A, 105, 267-272 (1984) · doi:10.1016/0375-9601(84)90994-0
[52] Nijhoff, F. W.; Walker, A. J., The discrete and continuous Painlevé VI hierarchy and the Garnier systems, Glasg. Math. J., 43, 109-123 (2001) · Zbl 0990.39015 · doi:10.1017/s0017089501000106
[53] Nimmo, J. J C., Darboux transformations and the discrete KP equation, J. Phys. A: Math. Gen., 30, 8693-8704 (1997) · Zbl 0926.39008 · doi:10.1088/0305-4470/30/24/028
[54] Novikov, S. P., The periodic problem for the Korteweg-de vries equation, Funct. Anal. Appl., 8, 236-246 (1974) · Zbl 0299.35017 · doi:10.1007/BF01075697
[55] Tamizhmani, K. M.; Kanaga Vel, S., Gauge equivalence and l-reductions of the differential-difference KP equation, Chaos Solitons Fractals, 11, 137-143 (2000) · Zbl 1160.37400 · doi:10.1016/s0960-0779(98)00277-x
[56] Toda, M., Theory of Nonlinear Lattices (1981), Berlin: Springer, Berlin · Zbl 0465.70014
[57] Veselov, A. P., Integrable maps, Russ. Math. Surv., 46, 3-45 (1991) · Zbl 0746.58033 · doi:10.1070/rm1991v046n05abeh002856
[58] Veselov, A. P.; Zakharov, V. E., What is an integrable mapping?, What Is Integrability? (1991), Berlin: Springer, Berlin · Zbl 0724.00014
[59] Wu, Y.; Geng, X., A new hierarchy of integrable differential-difference equations and Darboux transformation, J. Phys. A: Math. Gen., 31, L677-L684 (1998) · Zbl 0931.35190 · doi:10.1088/0305-4470/31/38/004
[60] Xu, X.; Cao, C.; Nijhoff, F. W., Algebro-geometric integration of the Q1 lattice equation via nonlinear integrable symplectic maps, Nonlinearity, 34, 2897-2918 (2021) · Zbl 1475.37083 · doi:10.1088/1361-6544/abddca
[61] Xu, X.; Cao, C.; Zhang, G., Finite genus solutions to the lattice Schwarzian Korteweg-de Vries equation, J. Nonlinear Math. Phys., 27, 633-646 (2020) · Zbl 1441.37076 · doi:10.1080/14029251.2020.1819608
[62] Xu, X.; Jiang, M.; Nijhoff, F. W., Integrabe symplectic maps associated with discrete Korteweg-de Vries-type equations, Stud. Appl. Math., 146, 233-278 (2021) · Zbl 1476.37080 · doi:10.1111/sapm.12346
[63] Zhang, D-j; Zhao, S-l, Solutions to ABS lattice equations via generalized Cauchy matrix approach, Stud. Appl. Math., 131, 72-103 (2013) · Zbl 1338.37113 · doi:10.1111/sapm.12007
[64] Ru-Guang, Z.; Jie, C., Two hierarchies of new differential-difference equations related to the Darboux transformations of the Kaup-Newell hierarchy, Commun. Theor. Phys., 63, 1-6 (2015) · Zbl 1305.37039 · doi:10.1088/0253-6102/63/1/01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.