×

Phase transitions in TGFT: functional renormalization group in the cyclic-melonic potential approximation and equivalence to \(\mathrm{O}(N)\) models. (English) Zbl 1509.83014

Summary: In the group field theory approach to quantum gravity, continuous spacetime geometry is expected to emerge via phase transition. However, understanding the phase diagram and finding fixed points under the renormalization group flow remains a major challenge. In this work we tackle the issue for a tensorial group field theory using the functional renormalization group method. We derive the flow equation for the effective potential at any order restricting to a subclass of tensorial interactions called cyclic melonic and projecting to a constant field in group space. For a tensor field of rank \(r\) on U(1) we explicitly calculate beta functions and find equivalence with those of \(\mathrm{O}(N)\) models but with an effective dimension flowing from \( r-1\) to zero. In the \( r-1\) dimensional regime, the equivalence to \(\mathrm{O}(N)\) models is modified by a tensor specific flow of the anomalous dimension with the consequence that the Wilson-Fisher type fixed point solution has two branches. However, due to the flow to dimension zero, fixed points describing a transition between a broken and unbroken phase do not persist and we find universal symmetry restoration. To overcome this limitation, it is necessary to go beyond compact configuration space.

MSC:

83C45 Quantization of the gravitational field
81T32 Matrix models and tensor models for quantum field theory
81T17 Renormalization group methods applied to problems in quantum field theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory
81-10 Mathematical modeling or simulation for problems pertaining to quantum theory

References:

[1] Williams, RM, Quantum Regge calculus, in Approaches to quantum gravity: toward a new understanding of space, time and matter, D (2009), Camrbidge U.K: Cambridge University Press, Camrbidge U.K · Zbl 1186.83064
[2] Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R., Nonperturbative quantum gravity, Phys. Rept., 519, 127 (2012) · doi:10.1016/j.physrep.2012.03.007
[3] Gurau, R., Random tensors (2016), Cambridge U.K: Oxford University Press, Cambridge U.K · Zbl 1346.83030 · doi:10.1093/acprof:oso/9780198787938.001.0001
[4] C. Rovelli, Zakopane lectures on loop gravity, PoS(QGQGS2011)003 [arXiv:1102.3660] [INSPIRE].
[5] Perez, A., The spin foam approach to quantum gravity, Living Rev. Rel., 16, 3 (2013) · Zbl 1320.83008 · doi:10.12942/lrr-2013-3
[6] Freidel, L., Group field theory: an overview, Int. J. Theor. Phys., 44, 1769 (2005) · Zbl 1100.83010 · doi:10.1007/s10773-005-8894-1
[7] D. Oriti, The microscopic dynamics of quantum space as a group field theory, in Foundations of space and time: reflections on quantum gravity, G. Ellis et al. eds., Cambridge University Press, Cambridge U.K. (2012), arXiv:1110.5606 [INSPIRE]. · Zbl 1269.83008
[8] T. Krajewski, Group field theories, PoS(QGQGS2011)005 [arXiv:1210.6257] [INSPIRE].
[9] S. Carrozza, Tensorial methods and renormalization in Group Field Theories, Ph.D. thesis, Orsay, LPT, France (2013) [arXiv:1310.3736] [INSPIRE]. · Zbl 1338.81004
[10] Di Francesco, P.; Ginsparg, PH; Zinn-Justin, J., 2 − D gravity and random matrices, Phys. Rept., 254, 1 (1995) · doi:10.1016/0370-1573(94)00084-G
[11] Wilson, KG, The renormalization group and critical phenomena, Rev. Mod. Phys., 55, 583 (1983) · doi:10.1103/RevModPhys.55.583
[12] Berges, J.; Tetradis, N.; Wetterich, C., Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept., 363, 223 (2002) · Zbl 0994.81077 · doi:10.1016/S0370-1573(01)00098-9
[13] P. Kopietz, L. Bartosch and F. Schütz, Introduction to the functional renormalization group, Lecture Notes in Physics volume 978, Springer Berlin Heidelberg, Berlin Germany (2010). · Zbl 1196.82001
[14] Delamotte, B., An Introduction to the nonperturbative renormalization group, Lect. Notes Phys., 852, 49 (2012) · Zbl 1257.81057 · doi:10.1007/978-3-642-27320-9_2
[15] N. Dupuis et al., The nonperturbative functional renormalization group and its applications, arXiv:2006.04853 [INSPIRE].
[16] Eichhorn, A.; Koslowski, T., Continuum limit in matrix models for quantum gravity from the Functional Renormalization Group, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.084016
[17] Eichhorn, A.; Koslowski, T., Towards phase transitions between discrete and continuum quantum spacetime from the Renormalization Group, Phys. Rev. D, 90, 104039 (2014) · doi:10.1103/PhysRevD.90.104039
[18] Eichhorn, A.; Koslowski, T., Flowing to the continuum in discrete tensor models for quantum gravity, Ann. Inst. H. Poincaré Comb. Phys. Interact., 5, 173 (2018) · Zbl 1392.81191 · doi:10.4171/AIHPD/52
[19] Eichhorn, A.; Koslowski, T.; Lumma, J.; Pereira, AD, Towards background independent quantum gravity with tensor models, Class. Quant. Grav., 36, 155007 (2019) · Zbl 1477.83026 · doi:10.1088/1361-6382/ab2545
[20] Eichhorn, A.; Koslowski, T.; Pereira, AD, Status of background-independent coarse-graining in tensor models for quantum gravity, Universe, 5, 53 (2019) · doi:10.3390/universe5020053
[21] Eichhorn, A.; Lumma, J.; Pereira, AD; Sikandar, A., Universal critical behavior in tensor models for four-dimensional quantum gravity, JHEP, 02, 110 (2020) · Zbl 1435.83050 · doi:10.1007/JHEP02(2020)110
[22] A. Castro and T. Koslowski, Renormalization group approach to the continuum limit of matrix models of quantum gravity with preferred foliation, arXiv:2008.10090 [INSPIRE].
[23] A. Eichhorn, A.D. Pereira and A.G.A. Pithis, The phase diagram of the multi-matrix model with ABAB-interaction from functional renormalization, arXiv:2009.05111 [INSPIRE].
[24] Benedetti, D.; Ben Geloun, J.; Oriti, D., Functional renormalisation group approach for tensorial group field theory: a rank-3 model, JHEP, 03, 084 (2015) · Zbl 1388.83088 · doi:10.1007/JHEP03(2015)084
[25] Benedetti, D.; Lahoche, V., Functional renormalization group approach for tensorial group field theory: a rank-6 model with closure constraint, Class. Quant. Grav., 33 (2016) · Zbl 1338.83069 · doi:10.1088/0264-9381/33/9/095003
[26] Lahoche, V.; Ousmane Samary, D., Functional renormalization group for the \(\text{U}(1)\hbox{-} {T}_5^6\) tensorial group field theory with closure constraint, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.045013
[27] Ben Geloun, J.; Martini, R.; Oriti, D., Functional renormalization group analysis of a tensorial group field theory on ℝ^3, EPL, 112, 31001 (2015) · doi:10.1209/0295-5075/112/31001
[28] Ben Geloun, J.; Martini, R.; Oriti, D., Functional renormalisation group analysis of tensorial group field theories on ℝ^d, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.024017
[29] J. Ben Geloun and T.A. Koslowski, Nontrivial UV behavior of rank-4 tensor field models for quantum gravity, arXiv:1606.04044 [INSPIRE].
[30] Carrozza, S.; Lahoche, V., Asymptotic safety in three-dimensional SU(2) group field theory: evidence in the local potential approximation, Class. Quant. Grav., 34, 115004 (2017) · Zbl 1370.83024 · doi:10.1088/1361-6382/aa6d90
[31] Ben Geloun, J.; Koslowski, TA; Oriti, D.; Pereira, AD, Functional renormalization group analysis of rank 3 tensorial group field theory: the full quartic invariant truncation, Phys. Rev. D, 97, 126018 (2018) · doi:10.1103/PhysRevD.97.126018
[32] Gielen, S.; Oriti, D.; Sindoni, L., Cosmology from group field theory formalism for quantum gravity, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.031301
[33] Gielen, S.; Oriti, D.; Sindoni, L., Homogeneous cosmologies as group field theory condensates, JHEP, 06, 013 (2014) · Zbl 1333.81187 · doi:10.1007/JHEP06(2014)013
[34] Gielen, S.; Sindoni, L., Quantum cosmology from group field theory condensates: a review, SIGMA, 12, 082 (2016) · Zbl 1347.83015
[35] Oriti, D.; Sindoni, L.; Wilson-Ewing, E., Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates, Class. Quant. Grav., 33, 224001 (2016) · Zbl 1351.83073 · doi:10.1088/0264-9381/33/22/224001
[36] de Cesare, M.; Pithis, AGA; Sakellariadou, M., Cosmological implications of interacting Group Field Theory models: cyclic Universe and accelerated expansion, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.064051
[37] Gielen, S.; Oriti, D., Cosmological perturbations from full quantum gravity, Phys. Rev. D, 98, 106019 (2018) · doi:10.1103/PhysRevD.98.106019
[38] Oriti, D., The universe as a quantum gravity condensate, Compt. Rend.Phys., 18, 235 (2017) · doi:10.1016/j.crhy.2017.02.003
[39] Pithis, AGA; Sakellariadou, M., Group field theory condensate cosmology: An appetizer, Universe, 5, 147 (2019) · doi:10.3390/universe5060147
[40] Benedetti, D., Critical behavior in spherical and hyperbolic spaces, J. Stat. Mech., 1501 (2015) · Zbl 1456.82398 · doi:10.1088/1742-5468/2015/01/P01002
[41] Serreau, J., Effective potential for quantum scalar fields on a de Sitter geometry, Phys. Rev. Lett., 107, 191103 (2011) · doi:10.1103/PhysRevLett.107.191103
[42] Guilleux, M.; Serreau, J., Nonperturbative renormalization group for scalar fields in de Sitter space: beyond the local potential approximation, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.045003
[43] Pithis, AGA; Thürigen, J., Phase transitions in group field theory: the Landau perspective, Phys. Rev. D, 98, 126006 (2018) · doi:10.1103/PhysRevD.98.126006
[44] Wetterich, C., Exact evolution equation for the effective potential, Phys. Lett. B, 301, 90 (1993) · doi:10.1016/0370-2693(93)90726-X
[45] Morris, TR, The exact renormalization group and approximate solutions, Int. J. Mod. Phys. A, 9, 2411 (1994) · Zbl 0985.81604 · doi:10.1142/S0217751X94000972
[46] F. Jacques, Analysis on Lie groups: an introduction, Cambridge studies in advanced mathematics, Cambridge U.K. (2008). · Zbl 1147.22001
[47] Gurau, R., Lost in translation: topological singularities in group field theory, Class. Quant. Grav., 27, 235023 (2010) · Zbl 1205.83022 · doi:10.1088/0264-9381/27/23/235023
[48] Di Francesco, P.; Itzykson, C., A generating function for fatgraphs, Ann. Inst. H. Poincaré Phys. Theor., 59, 117 (1993) · Zbl 0796.05045
[49] Carrozza, S.; Tanasa, A., O(N ) random tensor models, Lett. Math. Phys., 106, 1531 (2016) · Zbl 1362.83010 · doi:10.1007/s11005-016-0879-x
[50] Carrozza, S.; Lahoche, V.; Oriti, D., Renormalizable group field theory beyond melonic diagrams: an example in rank four, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.066007
[51] Lahoche, V.; Ousmane Samary, D., Unitary symmetry constraints on tensorial group field theory renormalization group flow, Class. Quant. Grav., 35, 195006 (2018) · Zbl 1409.81086 · doi:10.1088/1361-6382/aad83f
[52] Lahoche, V.; Ousmane Samary, D., Non-perturbative renormalization group beyond melonic sector: the effective vertex expansion method for group fields theories, Phys. Rev. D, 98, 126010 (2018) · doi:10.1103/PhysRevD.98.126010
[53] Lahoche, V.; Samary, DO, Ward-constrained melonic renormalization group flow for the rank-four ϕ^6tensorial group field theory, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.086009
[54] Lahoche, V.; Samary, DO, Progress in the solving nonperturbative renormalization group for tensorial group field theory, Universe, 5, 86 (2019) · doi:10.3390/universe5030086
[55] Lahoche, V.; Ousmane Samary, D., Ward identity violation for melonic T^4-truncation, Nucl. Phys. B, 940, 190 (2019) · Zbl 1409.83068 · doi:10.1016/j.nuclphysb.2019.01.005
[56] V. Lahoche and D.O. Samary, Large-d behavior of the Feynman amplitudes for a just-renormalizable tensorial group field theory, arXiv:1911.08601 [INSPIRE]. · Zbl 1409.81086
[57] Lahoche, V.; Ousmane Samary, D.; Pereira, AD, Renormalization group flow of coupled tensorial group field theories: towards the Ising model on random lattices, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.064014
[58] Lahoche, V.; Ousmane Samary, D., Revisited functional renormalization group approach for random matrices in the large-N limit, Phys. Rev. D, 101, 106015 (2020) · Zbl 1435.81136 · doi:10.1103/PhysRevD.101.106015
[59] Lahoche, V.; Samary, DO, Pedagogical comments about nonperturbative Ward-constrained melonic renormalization group flow, Phys. Rev. D, 101 (2020) · Zbl 1435.81136 · doi:10.1103/PhysRevD.101.024001
[60] Lahoche, V.; Ousmane Samary, D., Ward-constrained melonic renormalization group flow, Phys. Lett. B, 802, 135173 (2020) · Zbl 1435.81136 · doi:10.1016/j.physletb.2019.135173
[61] E. Baloitcha, V. Lahoche and D. Ousmane Samary, Flowing in discrete gravity models and Ward identities: A review, arXiv:2001.02631 [INSPIRE]. · Zbl 1435.81136
[62] Bonzom, V.; Gurau, R.; Riello, A.; Rivasseau, V., Critical behavior of colored tensor models in the large N limit, Nucl. Phys. B, 853, 174 (2011) · Zbl 1229.81222 · doi:10.1016/j.nuclphysb.2011.07.022
[63] Pérez-Sánchez, CI, Surgery in colored tensor models, J. Geom. Phys., 120, 262 (2017) · Zbl 1376.83021 · doi:10.1016/j.geomphys.2017.06.009
[64] Das, SR; Dhar, A.; Sengupta, AM; Wadia, SR, New critical behavior in d = 0 large-N matrix models, Mod. Phy. Lett. A, 5, 1041 (1990) · Zbl 1020.81740 · doi:10.1142/S0217732390001165
[65] Korchemsky, GP, Matrix model perturbed by higher order curvature terms, Mod. Phys. Lett. A, 7, 3081 (1992) · Zbl 1021.81839 · doi:10.1142/S0217732392002470
[66] Álvarez-Gaumé, L.; Barbón, JLF; Crnkovic, C., A proposal for strings at D > 1, Nucl. Phys. B, 394, 383 (1993) · doi:10.1016/0550-3213(93)90020-P
[67] Wetterich, C., The average action for scalar fields near phase transitions, Z. Phys. C, 57, 451 (1993) · doi:10.1007/BF01474340
[68] Nair, VP, Quantum field theory: a modern perspective, Graduate Texts in Contemporary Physics (2005), Germany: Springer, Germany · Zbl 1077.81001
[69] Ben Geloun, J., Renormalizable models in rank d ≥ 2 tensorial group field theory, Commun. Math. Phys., 332, 117 (2014) · Zbl 1300.83043 · doi:10.1007/s00220-014-2142-6
[70] Fisher, ME; Ma, S-k; Nickel, BG, Critical exponents for long-range interactions, Phys. Rev. Lett., 29, 917 (1972) · doi:10.1103/PhysRevLett.29.917
[71] Litim, DF, Optimized renormalization group flows, Phys. Rev. D, 64, 105007 (2001) · doi:10.1103/PhysRevD.64.105007
[72] Meibohm, J.; Pawlowski, JM; Reichert, M., Asymptotic safety of gravity-matter systems, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.084035
[73] Codello, A.; Defenu, N.; D’Odorico, G., Critical exponents of O(N) models in fractional dimensions, Phys. Rev. D, 91, 105003 (2015) · doi:10.1103/PhysRevD.91.105003
[74] Codello, A.; D’Odorico, G., O(N )-universality classes and the Mermin-Wagner theorem, Phys. Rev. Lett., 110, 141601 (2013) · doi:10.1103/PhysRevLett.110.141601
[75] Pelissetto, A.; Vicari, E., Critical phenomena and renormalization-group theory, Phys. Rept., 368, 549 (2002) · Zbl 0997.82019 · doi:10.1016/S0370-1573(02)00219-3
[76] K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett.28 (1972) 240 [INSPIRE].
[77] Tetradis, N.; Litim, D., Analytical solutions of exact renormalization group equations, Nucl. Phys. B, 464, 492 (1996) · Zbl 1004.82505 · doi:10.1016/0550-3213(95)00642-7
[78] D’Attanasio, M.; Morris, TR, Large N and the renormalization group, Phys. Lett. B, 409, 363 (1997) · doi:10.1016/S0370-2693(97)00866-6
[79] Yabunaka, S.; Delamotte, B., Surprises in O(N ) models: nonperturbative fixed points, large N limits, and multicriticality, Phys. Rev. Lett., 119, 191602 (2017) · doi:10.1103/PhysRevLett.119.191602
[80] Yabunaka, S.; Delamotte, B., Why might the standard large N analysis fail in the O(N ) model: the role of cusps in the fixed point potentials, Phys. Rev. Lett., 121, 231601 (2018) · doi:10.1103/PhysRevLett.121.231601
[81] Katsis, A.; Tetradis, N., Multicritical points of the O(N) scalar theory in 2 < d < 4 for large N, Phys. Lett. B, 780, 491 (2018) · Zbl 1390.81371 · doi:10.1016/j.physletb.2018.03.038
[82] N. Defenu and A. Codello, The fate of O(N ) multi-critical universal behaviour, arXiv:2005.10827 [INSPIRE].
[83] V.L. Berezinsky, Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems, Sov. Phys. JETP32 (1971) 493 [Zh. Eksp. Teor. Fiz.59 (1971) 907] [INSPIRE].
[84] V.L. Berezinsky, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems., Sov. Phys. JETP34 (1972) 610 [Zh.Eksp.Teor.Fiz.61 (1972) 1144] [INSPIRE].
[85] Kosterlitz, JM; Thouless, DJ, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C, 6, 1181 (1973) · doi:10.1088/0022-3719/6/7/010
[86] Grater, M.; Wetterich, C., Kosterlitz-Thouless phase transition in the two-dimensional linear σ-model, Phys. Rev. Lett., 75, 378 (1995) · doi:10.1103/PhysRevLett.75.378
[87] Von Gersdorff, G.; Wetterich, C., Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition, Phys. Rev. B, 64 (2001) · doi:10.1103/PhysRevB.64.054513
[88] Jakubczyk, P.; Metzner, W., Longitudinal fluctuations in the Berezinskii-Kosterlitz-Thouless phase, Phys. Rev. B, 95 (2017) · doi:10.1103/PhysRevB.95.085113
[89] Fei, L.; Giombi, S.; Klebanov, IR, Critical O(N) models in 6 − ϵ dimensions, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.025018
[90] Nakayama, Y.; Ohtsuki, T., Five dimensional O(n)-symmetric CFTS from conformal bootstrap, Physics Letters B, 734, 193 (2014) · doi:10.1016/j.physletb.2014.05.058
[91] Percacci, R.; Vacca, GP, Are there scaling solutions in the O(N)-models for large N in d > 4?, Phys. Rev. D, 90, 107702 (2014) · doi:10.1103/PhysRevD.90.107702
[92] Serreau, J., Renormalization group flow and symmetry restoration in de Sitter space, Phys. Lett. B, 730, 271 (2014) · Zbl 1381.81089 · doi:10.1016/j.physletb.2014.01.058
[93] Guilleux, M.; Serreau, J., Quantum scalar fields in de Sitter space from the nonperturbative renormalization group, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.084010
[94] Ratra, B., Restoration of spontaneously broken continuous symmetries in de Sitter space-time, Phys. Rev. D, 31, 1931 (1985) · doi:10.1103/PhysRevD.31.1931
[95] Mazzitelli, FD; Paz, JP, Gaussian and 1/N approximations in semiclassical cosmology, Phys. Rev. D, 39, 2234 (1989) · doi:10.1103/PhysRevD.39.2234
[96] Gurau, R.; Ryan, JP, Melons are branched polymers, Annales Henri Poincaré, 15, 2085 (2014) · Zbl 1303.83012 · doi:10.1007/s00023-013-0291-3
[97] Bonzom, V.; Delepouve, T.; Rivasseau, V., Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps, Nucl. Phys. B, 895, 161 (2015) · Zbl 1329.81258 · doi:10.1016/j.nuclphysb.2015.04.004
[98] Lionni, L.; Thürigen, J., Multi-critical behaviour of 4-dimensional tensor models up to order 6, Nucl. Phys. B, 941, 600 (2019) · Zbl 1415.83007 · doi:10.1016/j.nuclphysb.2019.02.026
[99] Calcagni, G.; Oriti, D.; Thürigen, J., Dimensional flow in discrete quantum geometries, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.084047
[100] J. Thürigen, Discrete quantum geometries and their effective dimension, Ph.D. thesis, Humboldt University, Berlin, Germany (main), arXiv:1510.08706 [INSPIRE].
[101] Hohenberg, PC, Existence of long-range order in one and two dimensions, Phys. Rev., 158, 383 (1967) · doi:10.1103/PhysRev.158.383
[102] Mermin, ND; Wagner, H., Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett., 17, 1133 (1966) · doi:10.1103/PhysRevLett.17.1133
[103] Coleman, SR, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys., 31, 259 (1973) · Zbl 1125.81321 · doi:10.1007/BF01646487
[104] Zinn-Justin, J., Quantum field theory and critical phenomena (2002), Oxford: Clarendon Press, Oxford · Zbl 1033.81006 · doi:10.1093/acprof:oso/9780198509233.001.0001
[105] Strocchi, F., Symmetry breaking (2005), Germany: Springer, Germany · Zbl 1075.81003 · doi:10.1007/b95211
[106] Ben Geloun, J.; Kegeles, A.; Pithis, AGA, Minimizers of the dynamical Boulatov model, Eur. Phys. J. C, 78, 996 (2018) · doi:10.1140/epjc/s10052-018-6483-8
[107] Bahr, B.; Steinhaus, S., Hypercuboidal renormalization in spin foam quantum gravity, Phys. Rev. D, 95, 126006 (2017) · doi:10.1103/PhysRevD.95.126006
[108] Steinhaus, S.; Thürigen, J., Emergence of spacetime in a restricted spin-foam model, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.026013
[109] Oriti, D., Group field theory as the 2nd quantization of loop quantum gravity, Class. Quant. Grav., 33 (2016) · Zbl 1338.83082 · doi:10.1088/0264-9381/33/8/085005
[110] Kegeles, A.; Oriti, D.; Tomlin, C., Inequivalent coherent state representations in group field theory, Class. Quant. Grav., 35, 125011 (2018) · Zbl 1391.83044 · doi:10.1088/1361-6382/aac39f
[111] A. Kegeles, Algebraic foundation of group field theory, Ph.D. thesis, University of Potsdam, Germany (2018).
[112] Gielen, S., Group field theory and its cosmology in a matter reference frame, Universe, 4, 103 (2018) · doi:10.3390/universe4100103
[113] Rosenhaus, V., An introduction to the SYK model, J. Phys. A, 52, 323001 (2019) · Zbl 1509.81595 · doi:10.1088/1751-8121/ab2ce1
[114] N. Delporte and V. Rivasseau, The Tensor Track V: Holographic Tensors, in 17th Hellenic School and Workshops on Elementary Particle Physics and Gravity, 4, 2018 [arXiv:1804.11101] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.