×

Universal critical behavior in tensor models for four-dimensional quantum gravity. (English) Zbl 1435.83050

Summary: Four-dimensional random geometries can be generated by statistical models with rank-4 tensors as random variables. These are dual to discrete building blocks of random geometries. We discover a potential candidate for a continuum limit in such a model by employing background-independent coarse-graining techniques where the tensor size serves as a pre-geometric notion of scale. A fixed point candidate which features two relevant directions is found. The possible relevance of this result in view of universal results for quantum gravity and a potential connection to the asymptotic-safety program is discussed.

MSC:

83C45 Quantization of the gravitational field
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
81T17 Renormalization group methods applied to problems in quantum field theory
81T32 Matrix models and tensor models for quantum field theory

References:

[1] G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. H. Poincare Phys. Theor.A 20 (1974) 69. · Zbl 1422.83019
[2] P. Van Nieuwenhuizen, On the Renormalization of Quantum Gravitation Without Matter, Annals Phys.104 (1977) 197 [INSPIRE].
[3] M.H. Goroff and A. Sagnotti, Quantum gravity at two loops, Phys. Lett.160B (1985) 81 [INSPIRE].
[4] D. Becker and M. Reuter, En route to Background Independence: Broken split-symmetry and how to restore it with bi-metric average actions, Annals Phys.350 (2014) 225 [arXiv:1404.4537] [INSPIRE]. · Zbl 1344.83024
[5] R. Loll, Quantum Gravity from Causal Dynamical Triangulations: A Review, Class. Quant. Grav.37 (2020) 013002 [arXiv:1905.08669] [INSPIRE]. · Zbl 1478.83095
[6] R. Williams, Quantum Regge calculus, in Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, Cambridge University Press, pp. 360-377 (2009). · Zbl 1186.83064
[7] P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2-D Gravity and random matrices, Phys. Rept.254 (1995) 1 [hep-th/9306153] [INSPIRE].
[8] V. Rivasseau, Quantum Gravity and Renormalization: The Tensor Track, AIP Conf. Proc.1444 (2012) 18 [arXiv:1112.5104] [INSPIRE].
[9] R. Gurau, Invitation to Random Tensors, SIGMA12 (2016) 094 [arXiv:1609.06439] [INSPIRE]. · Zbl 1346.83030
[10] A. Perez, The Spin Foam Approach to Quantum Gravity, Living Rev. Rel.16 (2013) 3 [arXiv:1205.2019] [INSPIRE]. · Zbl 1320.83008
[11] S. Surya, The causal set approach to quantum gravity, Living Rev. Rel.22 (2019) 5 [arXiv:1903.11544] [INSPIRE]. · Zbl 1442.83029
[12] A. Eichhorn, Steps towards Lorentzian quantum gravity with causal sets, J. Phys. Conf. Ser.1275 (2019) 012010 [arXiv:1902.00391] [INSPIRE].
[13] B. Bahr and B. Dittrich, (Broken) Gauge Symmetries and Constraints in Regge Calculus, Class. Quant. Grav.26 (2009) 225011 [arXiv:0905.1670] [INSPIRE]. · Zbl 1181.83062
[14] B. Bahr and B. Dittrich, Improved and Perfect Actions in Discrete Gravity, Phys. Rev.D 80 (2009) 124030 [arXiv:0907.4323] [INSPIRE]. · Zbl 1181.83062
[15] J. Ambjørn, B. Durhuus and T. Jonsson, Three-dimensional simplicial quantum gravity and generalized matrix models, Mod. Phys. Lett.A 6 (1991) 1133 [INSPIRE]. · Zbl 1020.83537
[16] N. Godfrey and M. Gross, Simplicial quantum gravity in more than two-dimensions, Phys. Rev.D 43 (1991) 1749 [INSPIRE].
[17] N. Sasakura, Tensor model for gravity and orientability of manifold, Mod. Phys. Lett.A 6 (1991) 2613 [INSPIRE]. · Zbl 1020.83542
[18] R. Gurau, Colored Group Field Theory, Commun. Math. Phys.304 (2011) 69 [arXiv:0907.2582] [INSPIRE]. · Zbl 1214.81170
[19] R. Gurau and V. Rivasseau, The 1/N expansion of colored tensor models in arbitrary dimension, EPL95 (2011) 50004 [arXiv:1101.4182] [INSPIRE].
[20] R. Gurau, The complete 1/N expansion of colored tensor models in arbitrary dimension, Annales Henri Poincaŕe13 (2012) 399 [arXiv:1102.5759] [INSPIRE]. · Zbl 1245.81118
[21] V. Bonzom, R. Gurau, A. Riello and V. Rivasseau, Critical behavior of colored tensor models in the large N limit, Nucl. Phys.B 853 (2011) 174 [arXiv:1105.3122] [INSPIRE]. · Zbl 1229.81222
[22] V. Bonzom, R. Gurau and V. Rivasseau, Random tensor models in the large N limit: Uncoloring the colored tensor models, Phys. Rev.D 85 (2012) 084037 [arXiv:1202.3637] [INSPIRE]. · Zbl 1229.81222
[23] S. Carrozza and A. Tanasa, O(N ) Random Tensor Models, Lett. Math. Phys.106 (2016) 1531 [arXiv:1512.06718] [INSPIRE]. · Zbl 1362.83010
[24] T. Regge, General relativity without coordinates, Nuovo Cim.19 (1961) 558 [INSPIRE].
[25] M.E. Agishtein and A.A. Migdal, Simulations of four-dimensional simplicial quantum gravity, Mod. Phys. Lett.A 7 (1992) 1039 [INSPIRE]. · Zbl 1020.83534
[26] S. Catterall, J.B. Kogut and R. Renken, Phase structure of four-dimensional simplicial quantum gravity, Phys. Lett.B 328 (1994) 277 [hep-lat/9401026] [INSPIRE]. · Zbl 0973.83517
[27] J. Ambjørn, J. Jurkiewicz and R. Loll, A Nonperturbative Lorentzian path integral for gravity, Phys. Rev. Lett.85 (2000) 924 [hep-th/0002050] [INSPIRE]. · Zbl 1101.83315
[28] J. Ambjørn, J. Jurkiewicz and R. Loll, Dynamically triangulating Lorentzian quantum gravity, Nucl. Phys.B 610 (2001) 347 [hep-th/0105267] [INSPIRE]. · Zbl 0971.83022
[29] J. Laiho and D. Coumbe, Evidence for Asymptotic Safety from Lattice Quantum Gravity, Phys. Rev. Lett.107 (2011) 161301 [arXiv:1104.5505] [INSPIRE].
[30] J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, A Second-order phase transition in CDT, Phys. Rev. Lett.107 (2011) 211303 [arXiv:1108.3932] [INSPIRE].
[31] J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, Second- and First-Order Phase Transitions in CDT, Phys. Rev.D 85 (2012) 124044 [arXiv:1205.1229] [INSPIRE].
[32] J. Ambjørn, D. Coumbe, J. Gizbert-Studnicki, A. Görlich and J. Jurkiewicz, New higher-order transition in causal dynamical triangulations, Phys. Rev.D 95 (2017) 124029 [arXiv:1704.04373] [INSPIRE]. · Zbl 1388.83081
[33] F. Caravelli, A Simple Proof of Orientability in Colored Group Field Theory, SpringerPlus1 (2012) 6 [arXiv:1012.4087] [INSPIRE].
[34] R. Gurau and J.P. Ryan, Colored Tensor Models — a review, SIGMA8 (2012) 020 [arXiv:1109.4812] [INSPIRE]. · Zbl 1242.05094
[35] R. Gurau, The 1/N expansion of colored tensor models, Annales Henri Poincaŕe12 (2011) 829 [arXiv:1011.2726] [INSPIRE]. · Zbl 1218.81088
[36] R. Gurau and J.P. Ryan, Melons are branched polymers, Annales Henri Poincaŕe15 (2014) 2085 [arXiv:1302.4386] [INSPIRE]. · Zbl 1303.83012
[37] V. Bonzom, T. Delepouve and V. Rivasseau, Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps, Nucl. Phys.B 895 (2015) 161 [arXiv:1502.01365] [INSPIRE]. · Zbl 1329.81258
[38] L. Lionni and J. Thürigen, Multi-critical behaviour of 4-dimensional tensor models up to order 6, Nucl. Phys.B 941 (2019) 600 [arXiv:1707.08931] [INSPIRE]. · Zbl 1415.83007
[39] A. Eichhorn and T. Koslowski, Towards phase transitions between discrete and continuum quantum spacetime from the Renormalization Group, Phys. Rev.D 90 (2014) 104039 [arXiv:1408.4127] [INSPIRE].
[40] A. Eichhorn and T. Koslowski, Flowing to the continuum in discrete tensor models for quantum gravity, Ann. Inst. H. Poincaŕe Comb. Phys. Interact.5 (2018) 173 [arXiv:1701.03029] [INSPIRE]. · Zbl 1392.81191
[41] D. Benedetti, J. Ben Geloun and D. Oriti, Functional Renormalisation Group Approach for Tensorial Group Field Theory: a Rank-3 Model, JHEP03 (2015) 084 [arXiv:1411.3180] [INSPIRE]. · Zbl 1388.83088
[42] D. Benedetti and V. Lahoche, Functional Renormalization Group Approach for Tensorial Group Field Theory: A Rank-6 Model with Closure Constraint, Class. Quant. Grav.33 (2016) 095003 [arXiv:1508.06384] [INSPIRE]. · Zbl 1338.83069
[43] J. Ben Geloun, R. Martini and D. Oriti, Functional Renormalization Group analysis of a Tensorial Group Field Theory on ℝ^3 , EPL112 (2015) 31001 [arXiv:1508.01855] [INSPIRE].
[44] J. Ben Geloun, R. Martini and D. Oriti, Functional Renormalisation Group analysis of Tensorial Group Field Theories on ℝ^d , Phys. Rev.D 94 (2016) 024017 [arXiv:1601.08211] [INSPIRE].
[45] J. Ben Geloun and T.A. Koslowski, Nontrivial UV behavior of rank-4 tensor field models for quantum gravity, arXiv:1606.04044 [INSPIRE].
[46] S. Carrozza and V. Lahoche, Asymptotic safety in three-dimensional SU(2) Group Field Theory: evidence in the local potential approximation, Class. Quant. Grav.34 (2017) 115004 [arXiv:1612.02452] [INSPIRE]. · Zbl 1370.83024
[47] J. Ben Geloun, T.A. Koslowski, D. Oriti and A.D. Pereira, Functional Renormalization Group analysis of rank 3 tensorial group field theory: The full quartic invariant truncation, Phys. Rev.D 97 (2018) 126018 [arXiv:1805.01619] [INSPIRE].
[48] V. Lahoche and D. Ousmane Samary, Functional renormalization group for the U(1)-\( {T}_5^6\) tensorial group field theory with closure constraint, Phys. Rev.D 95 (2017) 045013 [arXiv:1608.00379] [INSPIRE]. · Zbl 1409.81086
[49] V. Lahoche and D. Ousmane Samary, Ward identity violation for melonic T^4-truncation, Nucl. Phys.B 940 (2019) 190 [arXiv:1809.06081] [INSPIRE]. · Zbl 1409.83068
[50] V. Lahoche and D. Ousmane Samary, Non-perturbative renormalization group beyond melonic sector: The Effective Vertex Expansion method for group fields theories, Phys. Rev.D 98 (2018) 126010 [arXiv:1809.00247] [INSPIRE]. · Zbl 1418.81056
[51] V. Lahoche and D. Ousmane Samary, Unitary symmetry constraints on tensorial group field theory renormalization group flow, Class. Quant. Grav.35 (2018) 195006 [arXiv:1803.09902] [INSPIRE]. · Zbl 1409.81086
[52] S. Carrozza, V. Lahoche and D. Oriti, Renormalizable Group Field Theory beyond melonic diagrams: an example in rank four, Phys. Rev.D 96 (2017) 066007 [arXiv:1703.06729] [INSPIRE].
[53] V. Lahoche and D.O. Samary, Progress in the solving nonperturbative renormalization group for tensorial group field theory, Universe5 (2019) 86 [arXiv:1812.00905] [INSPIRE]. · Zbl 1409.83068
[54] V. Lahoche and D. Ousmane Samary, Ward-constrained melonic renormalization group flow, Phys. Lett.B 802 (2020) 135173 [arXiv:1904.05655] [INSPIRE]. · Zbl 1409.83068
[55] V. Lahoche and D.O. Samary, Ward-constrained melonic renormalization group flow for the rank-four 𝜙^6tensorial group field theory, Phys. Rev.D 100 (2019) 086009 [arXiv:1908.03910] [INSPIRE].
[56] A. Eichhorn, J. Lumma, T. Koslowski and A.D. Pereira, Towards background independent quantum gravity with tensor models, Class. Quant. Grav.36 (2019) 155007. · Zbl 1477.83026
[57] V. Lahoche, D.O. Samary and A.D. Pereira, Renormalization group flow of coupled tensorial group field theories: Towards the Ising model on random lattices, arXiv:1911.05173 [INSPIRE].
[58] S. Carrozza, Flowing in Group Field Theory Space: a Review, SIGMA12 (2016) 070 [arXiv:1603.01902] [INSPIRE]. · Zbl 1343.81177
[59] A. Eichhorn, T. Koslowski and A.D. Pereira, Status of background-independent coarse-graining in tensor models for quantum gravity, Universe5 (2019) 53 [arXiv:1811.12909] [INSPIRE].
[60] M. Reuter and F. Saueressig, Quantum Einstein Gravity, New J. Phys.14 (2012) 055022 [arXiv:1202.2274] [INSPIRE]. · Zbl 1207.81085
[61] R. Percacci, An Introduction to Covariant Quantum Gravity and Asymptotic Safety, vol. 3 of 100 Years of General Relativity, World Scientific (2017).
[62] A. Eichhorn, Status of the asymptotic safety paradigm for quantum gravity and matter, Found. Phys.48 (2018) 1407 [arXiv:1709.03696] [INSPIRE]. · Zbl 1411.83022
[63] A. Eichhorn, An asymptotically safe guide to quantum gravity and matter, Front. Astron. Space Sci.5 (2019) 47 [arXiv:1810.07615] [INSPIRE].
[64] M. Reuter and F. Saueressig, Quantum Gravity and the Functional Renormalization Group, Cambridge University Press (2019) [INSPIRE]. · Zbl 1207.81085
[65] M. Reuter and F. Saueressig, Fractal space-times under the microscope: A Renormalization Group view on Monte Carlo data, JHEP12 (2011) 012 [arXiv:1110.5224] [INSPIRE]. · Zbl 1306.83026
[66] S. Carlip, Dimension and Dimensional Reduction in Quantum Gravity, Universe5 (2019) 83 [arXiv:1904.04379] [INSPIRE]. · Zbl 1373.83002
[67] M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev.D 57 (1998) 971 [hep-th/9605030] [INSPIRE].
[68] O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev.D 65 (2002) 025013 [hep-th/0108040] [INSPIRE]. · Zbl 0993.83012
[69] M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev.D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].
[70] O. Lauscher and M. Reuter, Flow equation of quantum Einstein gravity in a higher derivative truncation, Phys. Rev.D 66 (2002) 025026 [hep-th/0205062] [INSPIRE]. · Zbl 0993.83012
[71] D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett.92 (2004) 201301 [hep-th/0312114] [INSPIRE]. · Zbl 1267.83040
[72] D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett.A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE]. · Zbl 1175.83030
[73] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic safety, arXiv:1301.4191 [INSPIRE].
[74] P. Don‘a, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum gravity, Phys. Rev.D 89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].
[75] N. Ohta, R. Percacci and G.P. Vacca, Renormalization Group Equation and scaling solutions for f (R) gravity in exponential parametrization, Eur. Phys. J.C 76 (2016) 46 [arXiv:1511.09393] [INSPIRE].
[76] H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, Gravitational Two-Loop Counterterm Is Asymptotically Safe, Phys. Rev. Lett.116 (2016) 211302 [arXiv:1601.01800] [INSPIRE].
[77] T. Denz, J.M. Pawlowski and M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity, Eur. Phys. J.C 78 (2018) 336 [arXiv:1612.07315] [INSPIRE].
[78] N. Christiansen, K. Falls, J.M. Pawlowski and M. Reichert, Curvature dependence of quantum gravity, Phys. Rev.D 97 (2018) 046007 [arXiv:1711.09259] [INSPIRE].
[79] A. Eichhorn, S. Lippoldt, J.M. Pawlowski, M. Reichert and M. Schiffer, How perturbative is quantum gravity?, Phys. Lett.B 792 (2019) 310 [arXiv:1810.02828] [INSPIRE].
[80] B. Knorr, C. Ripken and F. Saueressig, Form Factors in Asymptotic Safety: conceptual ideas and computational toolbox, Class. Quant. Grav.36 (2019) 234001 [arXiv:1907.02903] [INSPIRE]. · Zbl 1478.83093
[81] D. Benedetti and J. Henson, Imposing causality on a matrix model, Phys. Lett.B 678 (2009) 222 [arXiv:0812.4261] [INSPIRE].
[82] A. Eichhorn and T. Koslowski, Continuum limit in matrix models for quantum gravity from the Functional Renormalization Group, Phys. Rev.D 88 (2013) 084016 [arXiv:1309.1690] [INSPIRE].
[83] E. Brézin and J. Zinn-Justin, Renormalization group approach to matrix models, Phys. Lett.B 288 (1992) 54 [hep-th/9206035] [INSPIRE].
[84] D.J. Gross and A.A. Migdal, Nonperturbative Two-Dimensional Quantum Gravity, Phys. Rev. Lett.64 (1990) 127 [INSPIRE]. · Zbl 1050.81610
[85] D.J. Gross and A.A. Migdal, A Nonperturbative Treatment of Two-dimensional Quantum Gravity, Nucl. Phys.B 340 (1990) 333 [INSPIRE].
[86] M.R. Douglas and S.H. Shenker, Strings in Less Than One-Dimension, Nucl. Phys.B 335 (1990) 635 [INSPIRE].
[87] E. Brézin and V.A. Kazakov, Exactly Solvable Field Theories of Closed Strings, Phys. Lett.B 236 (1990) 144 [INSPIRE].
[88] C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett.B 301 (1993) 90 [arXiv:1710.05815] [INSPIRE].
[89] T.R. Morris, The Exact renormalization group and approximate solutions, Int. J. Mod. Phys.A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE]. · Zbl 0985.81604
[90] U. Ellwanger, Collective fields and flow equations, Z. Phys.C 58 (1993) 619 [INSPIRE].
[91] T. Krajewski and R. Toriumi, Polchinski’s exact renormalisation group for tensorial theories: Gaussian universality and power counting, J. Phys.A 49 (2016) 385401 [arXiv:1511.09084] [INSPIRE]. · Zbl 1348.81335
[92] T. Krajewski and R. Toriumi, Exact Renormalisation Group Equations and Loop Equations for Tensor Models, SIGMA12 (2016) 068 [arXiv:1603.00172] [INSPIRE]. · Zbl 1343.81179
[93] D. Benedetti, S. Carrozza, R. Gurau and M. Kolanowski, The 1/N expansion of the symmetric traceless and the antisymmetric tensor models in rank three, Commun. Math. Phys.371 (2019) 55 [arXiv:1712.00249] [INSPIRE]. · Zbl 1425.81071
[94] S. Carrozza, Large N limit of irreducible tensor models: O(N ) rank-3 tensors with mixed permutation symmetry, JHEP06 (2018) 039 [arXiv:1803.02496] [INSPIRE]. · Zbl 1395.81155
[95] V. Bonzom, New 1/N expansions in random tensor models, JHEP06 (2013) 062 [arXiv:1211.1657] [INSPIRE]. · Zbl 1342.83053
[96] V. Bonzom, Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d ≥ 2, SIGMA12 (2016) 073 [arXiv:1603.03570] [INSPIRE].
[97] R.C. Avohou, J. Ben Geloun and N. Dub, On the counting of O(N ) tensor invariants, arXiv:1907.04668 [INSPIRE]. · Zbl 07435487
[98] J. Ben Geloun and S. Ramgoolam, Counting Tensor Model Observables and Branched Covers of the 2-Sphere, arXiv:1307.6490 [INSPIRE]. · Zbl 1288.15031
[99] D.F. Litim, Optimized renormalization group flows, Phys. Rev.D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].
[100] S.R. Das, A. Dhar, A.M. Sengupta and S.R. Wadia, New Critical Behavior in d = 0 Large N Matrix Models, Mod. Phys. Lett.A 5 (1990) 1041 [INSPIRE]. · Zbl 1020.81740
[101] G.P. Korchemsky, Matrix model perturbed by higher order curvature terms, Mod. Phys. Lett.A 7 (1992) 3081 [hep-th/9205014] [INSPIRE]. · Zbl 1021.81839
[102] A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f (R)-gravity, Int. J. Mod. Phys.A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE]. · Zbl 1161.83343
[103] P.F. Machado and F. Saueressig, On the renormalization group flow of f (R)-gravity, Phys. Rev.D 77 (2008) 124045 [arXiv:0712.0445] [INSPIRE].
[104] J.A. Dietz and T.R. Morris, Asymptotic safety in the f (R) approximation, JHEP01 (2013) 108 [arXiv:1211.0955] [INSPIRE]. · Zbl 1342.81339
[105] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Further evidence for asymptotic safety of quantum gravity, Phys. Rev.D 93 (2016) 104022 [arXiv:1410.4815] [INSPIRE].
[106] K. Falls, C.R. King, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Asymptotic safety of quantum gravity beyond Ricci scalars, Phys. Rev.D 97 (2018) 086006 [arXiv:1801.00162] [INSPIRE].
[107] K.G. Falls, D.F. Litim and J. Schröder, Aspects of asymptotic safety for quantum gravity, Phys. Rev.D 99 (2019) 126015 [arXiv:1810.08550] [INSPIRE].
[108] H. Gies, B. Knorr and S. Lippoldt, Generalized Parametrization Dependence in Quantum Gravity, Phys. Rev.D 92 (2015) 084020 [arXiv:1507.08859] [INSPIRE].
[109] N. Alkofer and F. Saueressig, Asymptotically safe f (R)-gravity coupled to matter I: the polynomial case, Annals Phys.396 (2018) 173 [arXiv:1802.00498] [INSPIRE]. · Zbl 1398.83030
[110] G.P. De Brito, N. Ohta, A.D. Pereira, A.A. Tomaz and M. Yamada, Asymptotic safety and field parametrization dependence in the f (R) truncation, Phys. Rev.D 98 (2018) 026027 [arXiv:1805.09656] [INSPIRE].
[111] A. Eichhorn, The Renormalization Group flow of unimodular f (R) gravity, JHEP04 (2015) 096 [arXiv:1501.05848] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.