×

Composite neural network learning from fractional backstepping. (English) Zbl 1508.93146


MSC:

93C10 Nonlinear systems in control theory
93B70 Networked control
93C15 Control/observation systems governed by ordinary differential equations
34A08 Fractional ordinary differential equations
Full Text: DOI

References:

[1] Cohen, I., Golding, I., Ron, I. G. and Ben-Jacob, E., Biofluiddynamics of lubricating bacteria, Math. Methods Appl. Sci.24(17-18) (2001) 1429-1468. · Zbl 1097.76618
[2] Khalil, R., Horani, M. A., Yousef, A. and Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math.264 (2014) 65-70. · Zbl 1297.26013
[3] Aghababa, M. P. and Borjkhani, M., Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme, Complexity20(2) (2014) 37-46.
[4] Rahaman, M., Mondal, S. P., Shaikh, A. A., Pramanik, P., Roy, S., Maiti, M. K., Mondal, R. and De, D., Artificial bee colony optimization-inspired synergetic study of fractional-order economic production quantity modelSoft Comput.24(20) (2020) 15341-15359. · Zbl 1491.90011
[5] Vahdanipour, M. and Khodabandeh, M., Adaptive fractional order sliding mode control for a quadrotor with a varying load, Aerosp. Sci. Technol.86 (2019) 737-747.
[6] Yu, N. and Zhu, W., Event-triggered impulsive chaotic synchronization of fractional-order differential systems, Appl. Math. Comput.388 (2021) 125554. · Zbl 1508.34073
[7] Sheng, D., Wei, Y., Cheng, S. and Shuai, J., Adaptive backstepping control for fractional order systems with input saturation, J. Franklin Inst.354(5) (2017) 2245-2268. · Zbl 1398.93166
[8] Wei, Y., Chen, Y., Liang, S. and Wang, Y., A novel algorithm on adaptive backstepping control of fractional order systems, Neurocomputing165 (2015) 395-402.
[9] Bigdeli, N. and Ziazi, H. A., Finite-time fractional-order adaptive intelligent backstepping sliding mode control of uncertain fractional-order chaotic systems, J. Franklin Inst.354(1) (2017) 160-183. · Zbl 1355.93085
[10] Shin, D.-H. and Kim, Y., Reconfigurable flight control system design using adaptive neural networks, IEEE Trans. Control Syst. Technol.12(1) (2004) 87-100.
[11] Stotsky, A., Karl Hedrick, J. and Yip, P. P., The use of sliding modes to simplify the backstepping control method, in Proceedings of the \(1997\) American Control Conference (Cat. No. \(97CH36041)\), Vol. 3 (IEEE, 1997), pp. 1703-1708. · Zbl 0905.93010
[12] Farrell, J. A., Polycarpou, M., Sharma, M. and Dong, W., Command filtered backstepping, IEEE Trans. Automat. Control54(6) (2009) 1391-1395. · Zbl 1367.93382
[13] Swaroop, D., Hedrick, J. K., Yip, P. P. and Gerdes, J. C., Dynamic surface control for a class of nonlinear systems, IEEE Trans. Automat. Control45(10) (2000) 1893-1899. · Zbl 0991.93041
[14] Patrick Yip, P. and Karl Hedrick, J., Adaptive dynamic surface control: A simplified algorithm for adaptive backstepping control of nonlinear systems, Internat. J. Control71(5) (1998) 959-979. · Zbl 0969.93037
[15] Liu, H., Pan, Y., Li, S. and Chen, Y., Adaptive fuzzy backstepping control of fractional-order nonlinear systems, IEEE Trans. Syst. Man Cybern.: Syst.47(8) (2017) 2209-2217.
[16] Li, X., Wen, C. and Zou, Y., Adaptive backstepping control for fractional-order nonlinear systems with external disturbance and uncertain parameters using smooth control, IEEE Trans. Syst. Man Cybern.: Syst.51(12) (2020) 7860-7869.
[17] Wang, D. and Huang, J., Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form, IEEE Trans. Neural Netw.16(1) (2005) 195-202.
[18] Liu, H., Pan, Y. and Cao, J., Composite learning adaptive dynamic surface control of fractional-order nonlinear systems, IEEE Trans. Cybern.50(6) (2019) 2557-2567.
[19] Slotine, J.-J. E. and Li, W., Composite adaptive control of robot manipulators, Automatica25(4) (1989) 509-519. · Zbl 0696.93045
[20] Pan, Y., Sun, T. and Yu, H., Composite adaptive dynamic surface control using online recorded data, Internat. J. Robust Nonlinear Control30(5) (2016) 779-789. · Zbl 1351.93082
[21] Pan, Y. and Yu, H., Composite learning from adaptive dynamic surface control, IEEE Trans. Automat. Control61(9) (2015) 2603-2609. · Zbl 1359.93231
[22] Cheng, Y., Shao, T., Zhang, R. and Xu, B., Composite learning control of hypersonic flight dynamics without back-stepping, in International Conference on Neural Information Processing (Springer, Cham, 2017), pp. 212-218.
[23] Xu, B. and Sun, F., Composite intelligent learning control of strict-feedback systems with disturbance, IIEEE Trans. Syst. Man Cybern. Syst.48(2) (2018) 730-741.
[24] Guo, Y., Qin, H., Xu, B., Han, Y., Fan, Q. and Zhang, P., Composite learning adaptive sliding mode control for AUV target tracking, Neurocomputing351 (2019) 180-186.
[25] Sun, T., Peng, L., Cheng, L., Hou, Z. and Pan, Y., Composite learning enhanced robot impedance control, IEEE Trans. Neural Netw.31(3) (2020) 1052-1059.
[26] Liu, H., Wang, H., Cao, J., Alsaedi, A. and Hayat, T., Composite learning adaptive sliding mode control of fractional-order nonlinear systems with actuator faults, J. Franklin Inst.356(16) (2019) 9580-9599. · Zbl 1423.93079
[27] Pan, Y., Liu, Y. and Yu, H., Simplified adaptive neural control of strict-feedback nonlinear systems, Neurocomputing159 (2015) 251-256.
[28] Kurdila, A. J., Narcowich, F. J. and Ward, J. D., Persistency of excitation in identification using radial basis function approximants, SIAM J. Control Optim.33(2) (1995) 625-642. · Zbl 0831.93015
[29] Wang, C. and Hill, D. J., Learning from neural control, IEEE Trans. Neural Netw.17(1) (2006) 130-146.
[30] Aguila-Camacho, N., Duarte-Mermoud, M. A. and Gallegos, J. A., Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul.19(9) (2014) 2951-2957. · Zbl 1510.34111
[31] I. Chakraborty and D. Vrabie, Fault detection for dynamical systems using differential geometric and concurrent learning approach, IFAC-PapersOnLine51(24) (2018) 1395-1402.
[32] Chowdhary, G. and Johnson, E., Concurrent learning for convergence in adaptive control without persistency of excitation, in 49th IEEE Conference on Decision and Control (CDC) (IEEE, 2010), pp. 3674-3679.
[33] Pan, Y., Sun, T., Liu, Y. and Yu, H., Composite learning from adaptive backstepping neural network control, Neural Netw.95 (2017) 134-142. · Zbl 1441.93147
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.