×

Some results on proportional Caputo neutral fractional stochastic differential equations. (English) Zbl 07920741

Summary: This paper explores Proportional Neutral Fractional Stochastic Differential Equations (PNFSDEs), emphasizing their existence, uniqueness, and Hyers-Ulam Stability (HUS). The continuous dependence of solutions on initial data and their regularity in time are also established. By using the Banach Fixed Point Theorem (BFPT), Itô’s isometry formula, and some classical inequalities, we obtain the theoretical findings. Finally, we present an example to illustrate the effectiveness of our results.

MSC:

34K50 Stochastic functional-differential equations
34K40 Neutral functional-differential equations
34K37 Functional-differential equations with fractional derivatives
Full Text: DOI

References:

[1] N. Adjimi, A. Boutiara, M. E. Samei, S. Etemad, S. Rezapour and M. K. A. Kaabar, On solutions of a hybrid generalized Caputo-type problem via the noncompactness measure in the generalized version of Darbos criterion, Journal of Inequalities and Applications, 2023 (2023), Paper No. 34, 23 pp. doi: 10.1186/s13660-023-02919-z. · Zbl 1532.34005 · doi:10.1186/s13660-023-02919-z
[2] A. Ahmadova and N. I. Mahmudov, Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations, Stat. Probab. Lett., 168 (2021), 108949. doi: 10.1016/j.spl.2020.108949. · Zbl 1458.34011 · doi:10.1016/j.spl.2020.108949
[3] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Communications in Nonlinear Science and Numerical Simulation, 44 (2017), 460-481. doi: 10.1016/j.cnsns.2016.09.006. · Zbl 1465.26005 · doi:10.1016/j.cnsns.2016.09.006
[4] R. Almeida, A. B. Malinowska and M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41 (2018), 336-352. doi: 10.1002/mma.4617. · Zbl 1384.34010 · doi:10.1002/mma.4617
[5] R. Alharbi, R. Jan, S. Alyobi, Y. Altayeb and Z. Khan, Mathematical modeling and stability analysis of the dynamics of Monkeypox via fractional-calculus, Fractals, 30 (2022), 2240266. doi: 10.1142/S0218348X22402666. · Zbl 1516.34078 · doi:10.1142/S0218348X22402666
[6] M. A. Alqudah, H. Boulares, B. Abdalla and T. Abdeljawad, Khasminskii approach for \(\psi -\) Caputo fractional stochastic pantograph problem, Qualitative Theory of Dynamical Systems, 23 (2024), Paper No. 100, 14 pp. doi: 10.1007/s12346-023-00951-4. · Zbl 1535.34068 · doi:10.1007/s12346-023-00951-4
[7] A. Ben Makhlouf, E. El-Hady, H. Arfaoui, S. Boulaaras and L. Mchiri, Stability of some generalized fractional differential equations in the sense of Ulam-Hyers-Rassias, Boundary Value Problems, 2023 (2023), Paper No. 8, 8 pp. doi: 10.1186/s13661-023-01695-5. · Zbl 1541.34018 · doi:10.1186/s13661-023-01695-5
[8] A. Ben Makhlouf, E. El-Hady, S. Boulaaras and L. Mchiri, Stability results of some fractional neutral integrodifferential equations with delay, Journal of Function Spaces, 2022 (2022), 8211420, 7 pp. doi: 10.1155/2022/8211420. · Zbl 1489.45012 · doi:10.1155/2022/8211420
[9] A. Ben Makhlouf, L. Mchiri, H. Arfaoui, S. Dhahri, E. El-Hady and B. Cherif, Hadamard Itô-Doob stochastic fractional order systems, Discrete and Continuous Dynamical Systems Series-S, 16 (2023), 2060-2074. doi: 10.3934/dcdss.2022184. · Zbl 1517.60064 · doi:10.3934/dcdss.2022184
[10] A. Ben Makhlouf, E. El-Hady, S. Boulaaras and M. A. Hammami, Stability analysis for differential equations of the general conformable type, Complexity, 2022 (2022), 7283252. doi: 10.1155/2022/7283252. · doi:10.1155/2022/7283252
[11] A. Ben Makhlouf, L. Mchiri, M. Rhaima and J. Sallay, Hyers-Ulam stability of Hadamard fractional stochastic differential equations, Filomat, 37 (2023), 10219-10228. doi: 10.2298/FIL2330219B. · doi:10.2298/FIL2330219B
[12] A. Ben Makhlouf, L. Mchiri, H. M. Srivastava, Some existence and uniqueness results for a class of proportional Liouville-Caputo fractional stochastic differential equations, Bulletin des Sciences Mathématiques, 189 (2023), 103349, 15 pp. doi: 10.1016/j.bulsci.2023.103349. · Zbl 1533.34008 · doi:10.1016/j.bulsci.2023.103349
[13] M. M. Bekkouche, A. A. Ahmed, F. Yazid and F. S. Djeradi, Analytical and numerical study of a nonlinear Volterra integro-differential equation with the Caputo-Fabrizio fractional derivative, Discrete and Continuous Dynamical Systems-S, 16 (2023), 2177-2193. doi: 10.3934/dcdss.2023040. · Zbl 1535.45003 · doi:10.3934/dcdss.2023040
[14] C. Chen, M. Bohner and B. Jia, Caputo fractional continuous cobweb models, Journal of Computational and Applied Mathematics, 374 (2020), 112734, 9 pp. doi: 10.1016/j.cam.2020.112734. · Zbl 1436.34044 · doi:10.1016/j.cam.2020.112734
[15] T. S. Doan, P. T. Huong, P. E. Kloeden and H. T. Tuan, Asymptotic separation between solutions of Caputo fractional stochastic differential equations, Stoch. Anal. Appl., 36 (2018), 654-664. doi: 10.1080/07362994.2018.1440243. · Zbl 1401.26009 · doi:10.1080/07362994.2018.1440243
[16] E. El-Hady, A. Ben Makhlouf, S. Boulaaras and L. Mchiri, Ulam-Hyers-Rassias stability of nonlinear differential equations with Riemann-liouville fractional derivative, Journal of Function Spaces, 2022 (2022), 7827579. doi: 10.1155/2022/7827579. · Zbl 1494.34027 · doi:10.1155/2022/7827579
[17] M. Hidan, M. Akel, H. Abd-elmgeed and M. Abdalla, Some Matrix families of the Hurwitz-Lerch \(\zeta \)-functions and associated fractional Kinetic equations, Fractals, 30 (2022), 2240199. doi: 10.1142/S0218348X22401995. · Zbl 1528.11089 · doi:10.1142/S0218348X22401995
[18] M. A. Iqbal, M. M. Miah, H. M. Shahadat Ali, N. H. M. Shahen and A. Deifalla, New applications of the fractional derivative to extract abundant soliton solutions of the fractional order PDEs in mathematics physics, Partial Differential Equations in Applied Mathematics, 9 (2024), 100597. doi: 10.1016/j.padiff.2023.100597. · doi:10.1016/j.padiff.2023.100597
[19] R. Jan, S. Boulaaras, S. Alyobi, K. Rajagopal and M. Jawad, Fractional dynamics of the transmission phenomena of dengue infection with vaccination, Discrete and Continuous Dynamical Systems-S, 16 (2023), 2096-2117. doi: 10.3934/dcdss.2022154. · Zbl 1521.92087 · doi:10.3934/dcdss.2022154
[20] R. Jan, S. Qureshi, S. Boulaaras, V. T. Pham, E. Hincal and R. Guefaifia, Optimization of the fractional-order parameter with the error analysis for human immunodeficiency virus under Caputo operator, Discrete and Continuous Dynamical Systems-S, 16 (2023), 2118-2140. doi: 10.3934/dcdss.2023010. · Zbl 1517.92007 · doi:10.3934/dcdss.2023010
[21] F. Jarad, M. A. Alqudah and T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167-176. doi: 10.1515/math-2020-0014. · Zbl 1440.26007 · doi:10.1515/math-2020-0014
[22] F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Advances in Difference Equations, 2020 (2020), Paper No. 303, 16 pp. doi: 10.1186/s13662-020-02767-x. · Zbl 1485.26005 · doi:10.1186/s13662-020-02767-x
[23] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier (North-Holland), Amsterdam, 2006. · Zbl 1092.45003
[24] H. Liu, H. Qiu, X. Zhang, S. Li and J. Cao, Composite neural network learning from fractional backstepping, Fractals, 30 (2022), 2240190. doi: 10.1142/S0218348X22401909. · Zbl 1508.93146 · doi:10.1142/S0218348X22401909
[25] K. N. Nabi, H. Abboubakar, P. Kumar, Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives, Chaos, Solitons & Fractals, 141 (2020), 110283, 14 pp. doi: 10.1016/j.chaos.2020.110283. · Zbl 1496.92122 · doi:10.1016/j.chaos.2020.110283
[26] L. Sadek, A cotangent fractional derivative with the application, Fractal Fract., 7 (2023), 444. doi: 10.3390/fractalfract7060444. · doi:10.3390/fractalfract7060444
[27] L. Sadek, Stability of conformable linear infinite-dimensional systems, International Journal of Dynamics and Control, 11 (2023), 1276-1284. doi: 10.1007/s40435-022-01061-w. · doi:10.1007/s40435-022-01061-w
[28] L. Sadek, A. Akgül, A. S. Bataineh and I. Hashim, A cotangent fractional Gronwall inequality with applications, AIMS Mathematics, 9 (2024), 7819-7833. doi: 10.3934/math.2024380. · doi:10.3934/math.2024380
[29] L. Sadek and T. A. Lazǎr, On Hilfer cotangent fractional derivative and a particular class of fractional problems, AIMS Mathematics, 8 (2023), 28334-28352. doi: 10.3934/math.20231450. · doi:10.3934/math.20231450
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.