×

On singular vortex patches. I: Well-posedness issues. (English) Zbl 1508.76028

Memoirs of the American Mathematical Society 1400. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5682-5/pbk; 978-1-4704-7401-0/ebook). v, 89 p. (2023).
Summary: The purpose of this work is to discuss the well-posedness theory of singular vortex patches. Our main results are of two types: well-posedness and ill-posedness. On the well-posedness side, we show that globally \(m\)-fold symmetric vortex patches with corners emanating from the origin are globally well-posed in natural regularity classes as long as \(m\geq 3. In\) this case, all of the angles involved solve a closed ODE system which dictates the global-in-time dynamics of the corners and only depends on the initial locations and sizes of the corners. Along the way we obtain a global well-posedness result for a class of symmetric patches with boundary singular at the origin, which includes logarithmic spirals. On the ill-posedness side, we show that any other type of corner singularity in a vortex patch cannot evolve continuously in time except possibly when all corners involved have precisely the angle \(\frac{\pi}{2}\) for all time. Even in the case of vortex patches with corners of angle \(\frac{\pi}{2}\) or with corners which are only locally \(m\)-fold symmetric, we prove that they are generically ill-posed. We expect that in these cases of ill-posedness, the vortex patches actually cusp immediately in a self-similar way and we derive some asymptotic models which may be useful in giving a more precise description of the dynamics. In a companion work from 2020 on singular vortex patches [the authors, Trans. Am. Math. Soc. 373, No. 9, 6757–6775 (2020; Zbl 1454.35265)], we discuss the long-time behavior of symmetric vortex patches with corners and use them to construct patches on \(\mathbb{R}^2\) with interesting dynamical behavior such as cusping and spiral formation in infinite time.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
35Q31 Euler equations

Citations:

Zbl 1454.35265

References:

[1] R. C. Alexander. Family of similarity flows with vortex sheets. The Physics of Fluids, 14(2):231-239, 1971. · Zbl 0225.76014
[2] Alinhac, Serge, Remarques sur l’instabilit\'{e} du probl\`eme des poches de tourbillon, J. Funct. Anal., 361-379 (1991) · Zbl 0732.35075 · doi:10.1016/0022-1236(91)90083-H
[3] Ambrose, David M., Serfati solutions to the 2D Euler equations on exterior domains, J. Differential Equations, 4509-4560 (2015) · Zbl 1321.35144 · doi:10.1016/j.jde.2015.06.001
[4] Axelsson, Andreas, Advances in analysis and geometry. Hodge decompositions on weakly Lipschitz domains, Trends Math., 3-29 (2004), Birkh\"{a}user, Basel · Zbl 1174.58300
[5] Ayala, Diego, Maximum palinstrophy growth in 2D incompressible flows, J. Fluid Mech., 340-367 (2014) · Zbl 1328.76020 · doi:10.1017/jfm.2013.685
[6] Ayala, Diego, Vortices, maximum growth and the problem of finite-time singularity formation, Fluid Dyn. Res., 031404, 14 pp. (2014) · Zbl 1310.76058 · doi:10.1088/0169-5983/46/3/031404
[7] Ayala, Diego, Extreme vortex states and the growth of enstrophy in three-dimensional incompressible flows, J. Fluid Mech., 772-806 (2017) · Zbl 1383.76100 · doi:10.1017/jfm.2017.136
[8] Hantaek Bae and James P. Kelliher. Propagation of striated regularity of velocity for the Euler equations. arXiv:1508.01915. · Zbl 1462.35322
[9] Hantaek Bae and James P. Kelliher. The vortex patches of Serfati. arXiv:1409.5169. · Zbl 1462.35322
[10] Bahouri, H., \'{E}quations de transport relatives \'{a} des champs de vecteurs non-lipschitziens et m\'{e}canique des fluides, Arch. Rational Mech. Anal., 159-181 (1994) · Zbl 0821.76012 · doi:10.1007/BF00377659
[11] Bahouri, Hajer, Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], xvi+523 pp. (2011), Springer, Heidelberg · Zbl 1227.35004 · doi:10.1007/978-3-642-16830-7
[12] Benedetto, D., On the Euler flow in \(\mathbf{R}^2\), Arch. Rational Mech. Anal., 377-386 (1993) · Zbl 0784.76018 · doi:10.1007/BF00375585
[13] Bernicot, Fr\'{e}d\'{e}ric, On the global well-posedness for Euler equations with unbounded vorticity, Dyn. Partial Differ. Equ., 127-155 (2015) · Zbl 1327.76021 · doi:10.4310/DPDE.2015.v12.n2.a3
[14] Bernicot, Fr\'{e}d\'{e}ric, On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data, Ann. Sci. \'{E}c. Norm. Sup\'{e}r. (4), 559-576 (2014) · Zbl 1305.76014 · doi:10.24033/asens.2222
[15] Bertozzi, A. L., Global regularity for vortex patches, Comm. Math. Phys., 19-28 (1993) · Zbl 0771.76014
[16] Bertozzi, Andrea Louise, Existence, uniqueness, and a characterization of solutions to the contour dynamics equation, 174 pp. (1991), ProQuest LLC, Ann Arbor, MI
[17] Bourgain, Jean, Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces, Invent. Math., 97-157 (2015) · Zbl 1320.35266 · doi:10.1007/s00222-014-0548-6
[18] Bourgain, Jean, Strong illposedness of the incompressible Euler equation in integer \(C^m\) spaces, Geom. Funct. Anal., 1-86 (2015) · Zbl 1480.35316 · doi:10.1007/s00039-015-0311-1
[19] Burbea, Jacob, Motions of vortex patches, Lett. Math. Phys., 1-16 (1982) · Zbl 0484.76031 · doi:10.1007/BF02281165
[20] T. F. Buttke. The observation of singularities in the boundary of patches of constant vorticity. Phys. Fluids A, 1:1283-1285, 1989.
[21] Carrillo, J. A., On the evolution of an angle in a vortex patch, J. Nonlinear Sci., 23-47 (2000) · Zbl 0972.76015 · doi:10.1007/s003329910002
[22] Castro, Angel, Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations, Duke Math. J., 935-984 (2016) · Zbl 1339.35234 · doi:10.1215/00127094-3449673
[23] Castro, Angel, Uniformly rotating analytic global patch solutions for active scalars, Ann. PDE, Art. 1, 34 pp. (2016) · Zbl 1397.35020 · doi:10.1007/s40818-016-0007-3
[24] Chemin, J.-Y., S\'{e}minaire sur les \'{E}quations aux D\'{e}riv\'{e}es Partielles, 1990-1991. Persistance des structures g\'{e}om\'{e}triques li\'{e}es aux poches de tourbillon, Exp. No. XIII, 11 pp. (1991), \'{E}cole Polytech., Palaiseau · Zbl 0778.76016
[25] Chemin, Jean-Yves, Persistance de structures g\'{e}om\'{e}triques dans les fluides incompressibles bidimensionnels, Ann. Sci. \'{E}cole Norm. Sup. (4), 517-542 (1993) · Zbl 0779.76011
[26] Chemin, Jean-Yves, Perfect incompressible fluids, Oxford Lecture Series in Mathematics and its Applications, x+187 pp. (1998), The Clarendon Press, Oxford University Press, New York · Zbl 0927.76002
[27] Cohen, Albert, Multiscale approximation of vortex patches, SIAM J. Appl. Math., 477-502 (2000) · Zbl 0962.76070 · doi:10.1137/S0036139997319785
[28] Constantin, P., On the evolution of nearly circular vortex patches, Comm. Math. Phys., 177-198 (1988) · Zbl 0673.76025
[29] Cozzi, Elaine, Solutions to the 2D Euler equations with velocity unbounded at infinity, J. Math. Anal. Appl., 144-161 (2015) · Zbl 1308.35187 · doi:10.1016/j.jmaa.2014.09.053
[30] Cozzi, Elaine, Well-posedness of the 2D Euler equations when velocity grows at infinity, Discrete Contin. Dyn. Syst., 2361-2392 (2019) · Zbl 1412.35237 · doi:10.3934/dcds.2019100
[31] Dacorogna, Bernard, Introduction to the calculus of variations, x+311 pp. (2015), Imperial College Press, London · Zbl 1298.49001
[32] Danchin, Rapha\"{e}l, \'{E}volution temporelle d’une poche de tourbillon singuli\`ere, Comm. Partial Differential Equations, 685-721 (1997) · Zbl 0882.35093 · doi:10.1080/03605309708821280
[33] Danchin, Rapha\"{e}l, \'{E}volution d’une singularit\'{e} de type cusp dans une poche de tourbillon, Rev. Mat. Iberoamericana, 281-329 (2000) · Zbl 1158.35404 · doi:10.4171/RMI/276
[34] de la Hoz, Francisco, An analytical and numerical study of steady patches in the disc, Anal. PDE, 1609-1670 (2016) · Zbl 1353.35229 · doi:10.2140/apde.2016.9.1609
[35] G. S. Deem and N. J. Zabusky. Stationary “\(v\)-states,” interactions, recurrence, and breaking. Phys. Rev. Lett., 40:859-862, 1978.
[36] Denisov, Sergey A., Double exponential growth of the vorticity gradient for the two-dimensional Euler equation, Proc. Amer. Math. Soc., 1199-1210 (2015) · Zbl 1315.35150 · doi:10.1090/S0002-9939-2014-12286-6
[37] Denisov, Sergey A., The sharp corner formation in 2D Euler dynamics of patches: infinite double exponential rate of merging, Arch. Ration. Mech. Anal., 675-705 (2015) · Zbl 1308.35188 · doi:10.1007/s00205-014-0793-2
[38] Depauw, Nicolas, Poche de tourbillon pour Euler 2D dans un ouvert \`a bord, J. Math. Pures Appl. (9), 313-351 (1999) · Zbl 0927.76014 · doi:10.1016/S0021-7824(98)00003-8
[39] Dritschel, D. G., Does contour dynamics go singular?, Phys. Fluids A, 748-753 (1990) · doi:10.1063/1.857728
[40] Dritschel, David G., Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics, J. Comput. Phys., 240-266 (1988) · Zbl 0642.76025 · doi:10.1016/0021-9991(88)90165-9
[41] Dritschel, David G., The roll-up of vorticity strips on the surface of a sphere, J. Fluid Mech., 47-69 (1992) · Zbl 0744.76061 · doi:10.1017/S0022112092000697
[42] Tarek M. Elgindi. Propagation of Singularities for the 2d incompressible Euler equations. in preparation. · Zbl 1492.35199
[43] Tarek M. Elgindi. Remarks on functions with bounded Laplacian. arXiv:1605.05266. · Zbl 1368.35218
[44] Elgindi, Tarek M., On singular vortex patches, II: long-time dynamics, Trans. Amer. Math. Soc., 6757-6775 (2020) · Zbl 1454.35265 · doi:10.1090/tran/8134
[45] Elgindi, Tarek M., Symmetries and critical phenomena in fluids, Comm. Pure Appl. Math., 257-316 (2020) · Zbl 1442.76031 · doi:10.1002/cpa.21829
[46] Elgindi, Tarek Mohamed, Ill-posedness for the incompressible Euler equations in critical Sobolev spaces, Ann. PDE, Paper No. 7, 19 pp. (2017) · Zbl 1403.35218 · doi:10.1007/s40818-017-0027-7
[47] Elgindi, Tarek M., \(L^\infty\) ill-posedness for a class of equations arising in hydrodynamics, Arch. Ration. Mech. Anal., 1979-2025 (2020) · Zbl 1507.35153 · doi:10.1007/s00205-019-01457-7
[48] Elling, V., Variety of unsymmetric multibranched logarithmic vortex spirals, European J. Appl. Math., 23-38 (2019) · Zbl 1407.35158 · doi:10.1017/S0956792517000365
[49] Friedman, Avner, Averaged motion of charged particles under their self-induced electric field, Indiana Univ. Math. J., 1167-1225 (1994) · Zbl 0849.35002 · doi:10.1512/iumj.1994.43.43052
[50] Friedman, Avner, A time-dependent free boundary problem modeling the visual image in electrophotography, Arch. Rational Mech. Anal., 259-303 (1993) · Zbl 0810.35162 · doi:10.1007/BF00375128
[51] Hassainia, Zineb, Global bifurcation of rotating vortex patches, Comm. Pure Appl. Math., 1933-1980 (2020) · Zbl 1452.76038 · doi:10.1002/cpa.21855
[52] Hmidi, Taoufik, Bifurcation of rotating patches from Kirchhoff vortices, Discrete Contin. Dyn. Syst., 5401-5422 (2016) · Zbl 1351.35116 · doi:10.3934/dcds.2016038
[53] Hmidi, Taoufik, Degenerate bifurcation of the rotating patches, Adv. Math., 799-850 (2016) · Zbl 1352.35101 · doi:10.1016/j.aim.2016.07.022
[54] Hmidi, Taoufik, Boundary regularity of rotating vortex patches, Arch. Ration. Mech. Anal., 171-208 (2013) · Zbl 1286.35201 · doi:10.1007/s00205-013-0618-8
[55] Hoff, David, Instantaneous boundary tangency and cusp formation in two-dimensional fluid flow, SIAM J. Math. Anal., 753-780 (2009) · Zbl 1197.35070 · doi:10.1137/080733164
[56] Huang, Chaocheng, Singular integral system approach to regularity of 3D vortex patches, Indiana Univ. Math. J., 509-552 (2001) · Zbl 0993.35077 · doi:10.1512/iumj.2001.50.1802
[57] Iftimie, D., On the large-time behavior of two-dimensional vortex dynamics, Phys. D, 153-160 (2003) · Zbl 1092.76010 · doi:10.1016/S0167-2789(03)00028-9
[58] Iftimie, Drago\c{s}, On the evolution of compactly supported planar vorticity, Comm. Partial Differential Equations, 1709-1730 (1999) · Zbl 0937.35137 · doi:10.1080/03605309908821480
[59] In-Jee Jeong and Tsuyoshi Yoneda. Vortex stretching on the incompressible 3D Navier-Stokes equations. arXiv:2001.02333 · Zbl 1479.35617
[60] Kaneda, Yukio, A family of analytical solutions of the motions of double-branched spiral vortex sheets, Phys. Fluids A, 261-266 (1989) · doi:10.1063/1.857441
[61] Kelliher, James P., A characterization at infinity of bounded vorticity, bounded velocity solutions to the 2D Euler equations, Indiana Univ. Math. J., 1643-1666 (2015) · Zbl 1353.76007 · doi:10.1512/iumj.2015.64.5717
[62] Kim, Namkwon, Eigenvalues associated with the vortex patch in 2-D Euler equations, Math. Ann., 747-758 (2004) · Zbl 1058.76012 · doi:10.1007/s00208-004-0568-4
[63] Kiselev, Alexander, Global regularity and fast small-scale formation for Euler patch equation in a smooth domain, Comm. Partial Differential Equations, 279-308 (2019) · Zbl 1416.35195 · doi:10.1080/03605302.2018.1546318
[64] Kiselev, Alexander, Finite time singularity for the modified SQG patch equation, Ann. of Math. (2), 909-948 (2016) · Zbl 1360.35159 · doi:10.4007/annals.2016.184.3.7
[65] Kiselev, Alexander, Small scale creation for solutions of the incompressible two-dimensional Euler equation, Ann. of Math. (2), 1205-1220 (2014) · Zbl 1304.35521 · doi:10.4007/annals.2014.180.3.9
[66] Lamb, Horace, Hydrodynamics, Cambridge Mathematical Library, xxvi+738 pp. (1993), Cambridge University Press, Cambridge · Zbl 0828.01012
[67] Luzzatto-Fegiz, Paolo, Bifurcation structure and stability in models of opposite-signed vortex pairs, Fluid Dyn. Res., 031408, 14 pp. (2014) · Zbl 1307.76019 · doi:10.1088/0169-5983/46/3/031408
[68] Luzzatto-Fegiz, Paolo, An efficient and general numerical method to compute steady uniform vortices, J. Comput. Phys., 6495-6511 (2011) · Zbl 1408.76123 · doi:10.1016/j.jcp.2011.04.035
[69] Luzzatto-Fegiz, Paolo, Nonlinear physical systems. Investigating stability and finding new solutions in conservative fluid flows through bifurcation approaches, Mech. Eng. Solid Mech. Ser., 203-221 (2014), Wiley, Hoboken, NJ · Zbl 1453.76052
[70] Majda, Andrew, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math., S187-S220 (1986) · Zbl 0595.76021 · doi:10.1002/cpa.3160390711
[71] Majda, Andrew J., Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, xii+545 pp. (2002), Cambridge University Press, Cambridge · Zbl 0983.76001
[72] Marchioro, Carlo, Bounds on the growth of the support of a vortex patch, Comm. Math. Phys., 507-524 (1994) · Zbl 0839.76010
[73] Marchioro, Carlo, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, xii+283 pp. (1994), Springer-Verlag, New York · Zbl 0789.76002 · doi:10.1007/978-1-4612-4284-0
[74] Misio\l ek, Gerard, Local ill-posedness of the incompressible Euler equations in \(C^1\) and \(B^1_{\infty ,1}\), Math. Ann., 243-268 (2016) · Zbl 1336.35280 · doi:10.1007/s00208-015-1213-0
[75] Misio\l ek, Gerard, Continuity of the solution map of the Euler equations in H\"{o}lder spaces and weak norm inflation in Besov spaces, Trans. Amer. Math. Soc., 4709-4730 (2018) · Zbl 1388.35160 · doi:10.1090/tran/7101
[76] Mucha, Piotr Bogus\l aw, Zygmund spaces, inviscid limit and uniqueness of Euler flows, Comm. Math. Phys., 831-841 (2008) · Zbl 1143.35346 · doi:10.1007/s00220-008-0452-2
[77] Overman, Edward A., II, Steady-state solutions of the Euler equations in two dimensions. II. Local analysis of limiting \(V\)-states, SIAM J. Appl. Math., 765-800 (1986) · Zbl 0608.76018 · doi:10.1137/0146049
[78] Polvani, Lorenzo M., Wave and vortex dynamics on the surface of a sphere, J. Fluid Mech., 35-64 (1993) · Zbl 0793.76022 · doi:10.1017/S0022112093002381
[79] Pullin, D. I., The large-scale structure of unsteady self-similar rolled-up vortex sheets, J. Fluid Mech., 401-430 (1978) · Zbl 0393.76018 · doi:10.1017/S0022112078002189
[80] Pullin, D. I., Mathematical aspects of vortex dynamics. On similarity flows containing two-branched vortex sheets, 97-106 (1988), SIAM, Philadelphia, PA · Zbl 0671.76028
[81] Pullin, D. I., Tubes, sheets and singularities in fluid dynamics. Vortex tubes, spirals, and large-eddy simulation of turbulence, Fluid Mech. Appl., 171-180 (2001), Kluwer Acad. Publ., Dordrecht · Zbl 1142.76402 · doi:10.1007/0-306-48420-X\_24
[82] Saffman, P. G., Vortex dynamics, Cambridge Monographs on Mechanics and Applied Mathematics, xii+311 pp. (1992), Cambridge University Press, New York · Zbl 0777.76004
[83] Saffman, P. G., Equilibrium shapes of a pair of equal uniform vortices, Phys. Fluids, 2339-2342 (1980) · doi:10.1063/1.862935
[84] Saffman, P. G., The touching pair of equal and opposite uniform vortices, Phys. Fluids, 1929-1930 (1982) · Zbl 0498.76025 · doi:10.1063/1.863679
[85] Serfati, Philippe, R\'{e}gularit\'{e} stratifi\'{e}e et \'{e}quation d’Euler \(3\) D \`a temps grand, C. R. Acad. Sci. Paris S\'{e}r. I Math., 925-928 (1994) · Zbl 0805.76009
[86] Serfati, Philippe, Une preuve directe d’existence globale des vortex patches \(2\) D, C. R. Acad. Sci. Paris S\'{e}r. I Math., 515-518 (1994) · Zbl 0803.76022
[87] Serfati, Philippe, Solutions \(C^\infty\) en temps, \(n-\log\) Lipschitz born\'{e}es en espace et \'{e}quation d’Euler, C. R. Acad. Sci. Paris S\'{e}r. I Math., 555-558 (1995) · Zbl 0835.76012
[88] Serfati, Philippe, Structures holomorphes \`a faible r\'{e}gularit\'{e} spatiale en m\'{e}canique des fluides, J. Math. Pures Appl. (9), 95-104 (1995) · Zbl 0849.35111
[89] Sohn, Sung-Ik, Stability of barotropic vortex strip on a rotating sphere, Proc. A., 20170883, 25 pp. (2018) · Zbl 1402.86013 · doi:10.1098/rspa.2017.0883
[90] Taniuchi, Yasushi, Uniformly local \(L^p\) estimate for 2-D vorticity equation and its application to Euler equations with initial vorticity in \({\bf bmo}\), Comm. Math. Phys., 169-186 (2004) · Zbl 1056.76009 · doi:10.1007/s00220-004-1095-6
[91] Taniuchi, Yasushi, On the two-dimensional Euler equations with spatially almost periodic initial data, J. Math. Fluid Mech., 594-612 (2010) · Zbl 1270.35357 · doi:10.1007/s00021-009-0304-7
[92] Vishik, Misha, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. \'{E}cole Norm. Sup. (4), 769-812 (1999) · Zbl 0938.35128 · doi:10.1016/S0012-9593(00)87718-6
[93] Wu, H. M., Steady-state solutions of the Euler equations in two dimensions: rotating and translating \(V\)-states with limiting cases. I. Numerical algorithms and results, J. Comput. Phys., 42-71 (1984) · Zbl 0524.76029 · doi:10.1016/0021-9991(84)90051-2
[94] Xu, Xiaoqian, Fast growth of the vorticity gradient in symmetric smooth domains for 2D incompressible ideal flow, J. Math. Anal. Appl., 594-607 (2016) · Zbl 1339.35251 · doi:10.1016/j.jmaa.2016.02.066
[95] B. B. Xue, E. R. Johnson, and N. R. McDonald. New families of vortex patch equilibria for the two-dimensional Euler equations. Physics of Fluids, 29(12):123602, 2017.
[96] Judovi\v{c}, V. I., Non-stationary flows of an ideal incompressible fluid, \v{Z}. Vy\v{c}isl. Mat i Mat. Fiz., 1032-1066 (1963) · Zbl 0129.19402
[97] Yudovich, V. I., Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 27-38 (1995) · Zbl 0841.35092 · doi:10.4310/MRL.1995.v2.n1.a4
[98] Zabusky, Norman J., Contour dynamics for the Euler equations in two dimensions, J. Comput. Phys., 96-106 (1979) · Zbl 0405.76014 · doi:10.1016/0021-9991(79)90089-5
[99] Zlato\v{s}, Andrej, Exponential growth of the vorticity gradient for the Euler equation on the torus, Adv. Math., 396-403 (2015) · Zbl 1308.35194 · doi:10.1016/j.aim.2014.08.012
[100] Q. Zou, E. A. Overman, H. M. Wu, and N. J. Zabusky. Contour dynamics for the Euler equations: Curvature controlled initial node placement and accuracy. J. Comp. Phys., 78:350-368, 1988. · Zbl 0649.76010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.