×

Well-posedness of the 2D Euler equations when velocity grows at infinity. (English) Zbl 1412.35237

Summary: We prove the uniqueness and finite-time existence of bounded-vorticity solutions to the 2D Euler equations having velocity growing slower than the square root of the distance from the origin, obtaining global existence for more slowly growing velocity fields. We also establish continuous dependence on initial data.

MSC:

35Q31 Euler equations
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] D. M. Ambrose; J. P. Kelliher; M. C. Lopes Filho; H. J. Nussenzveig Lopes, Serfati solutions to the 2D Euler equations on exterior domains, J. Differential Equations, 259, 4509-4560 (2015) · Zbl 1321.35144 · doi:10.1016/j.jde.2015.06.001
[2] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Heidelberg, 2011. · Zbl 1227.35004
[3] J.-Y. Chemin, Perfect Incompressible Fluids, vol. 14 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press Oxford University Press, New York, 1998, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. · Zbl 0927.76002
[4] E. Cozzi, Solutions to the 2D Euler equations with velocity unbounded at infinity, J. Math. Anal. Appl., 423, 144-161 (2015) · Zbl 1308.35187 · doi:10.1016/j.jmaa.2014.09.053
[5] E. Cozzi; J. P. Kelliher, Vanishing viscosity in the plane for vorticity in borderline spaces of Besov type, J. Differential Equations, 235, 647-657 (2007) · Zbl 1185.35186 · doi:10.1016/j.jde.2006.12.022
[6] E. Cozzi; J. P. Kelliher, Incompressible Euler equations and the effect of changes at a distance, J. Math. Fluid Mech., 18, 765-781 (2016) · Zbl 1432.76051 · doi:10.1007/s00021-016-0268-3
[7] T. M. Elgindi and I.-J. Jeong, Symmetries and critical phenomena in fluids, arXiv: 1610.09701v2. · Zbl 1442.76031
[8] T. Gallay, Infinite energy solutions of the two-dimensional Navier-Stokes equations, Ann. Fac. Sci. Toulouse, 26, 979-1027 (2017) · Zbl 1390.35230 · doi:10.5802/afst.1558
[9] J. P. Kelliher, On the flow map for 2D Euler equations with unbounded vorticity, Nonlinearity, 24, 2599-2637 (2011) · Zbl 1222.76016 · doi:10.1088/0951-7715/24/9/013
[10] J. P. Kelliher, A characterization at infinity of bounded vorticity, bounded velocity solutions to the 2D Euler equations, Indiana Univ. Math. J., 64, 1643-1666 (2015) · Zbl 1353.76007 · doi:10.1512/iumj.2015.64.5717
[11] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, vol. 27 of Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. · Zbl 0983.76001
[12] C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, vol. 96 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994. · Zbl 0789.76002
[13] F. J. McGrath, Nonstationary plane flow of viscous and ideal fluids, Arch. Rational Mech. Anal., 27, 329-348 (1967) · Zbl 0187.49508 · doi:10.1007/BF00251436
[14] P. Serfati, Solutions C^∞ en temps, n-log Lipschitz bornées en espace et équation d’Euler, C. R. Acad. Sci. Paris Sér. I Math., 320, 555-558 (1995) · Zbl 0835.76012
[15] Y. Taniuchi; T. Tashiro; T. Yoneda, On the two-dimensional Euler equations with spatially almost periodic initial data, J. Math. Fluid Mech., 12, 594-612 (2010) · Zbl 1270.35357 · doi:10.1007/s00021-009-0304-7
[16] V. I. Yudovich, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032-1066 (Russian). · Zbl 0129.19402
[17] V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2, 27-38 (1995) · Zbl 0841.35092 · doi:10.4310/MRL.1995.v2.n1.a4
[18] S. Zelik, Infinite energy solutions for damped Navier-Stokes equations in \(\begin{document} {\mathbb R}^2\end{document} \), J. Math. Fluid Mech., 15, 717-745 (2013) · Zbl 1293.35221 · doi:10.1007/s00021-013-0144-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.