×

Propagation of regularity of level sets for a class of active transport equations. (English) Zbl 1462.35322

Summary: We prove that for any \(\alpha \in(0, 1)\), the \(C^{1 , \alpha}\) regularity of level sets for solutions to a class of active transport equations is propagated over the existence time of the solution. This extends a recent result of A. Bertozzi et al. [SIAM J. Math. Anal. 48, No. 6, 3789–3819 (2016; Zbl 1355.35110)] for patch boundary regularity for the aggregation equation.

MSC:

35Q49 Transport equations
35Q31 Euler equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
76B47 Vortex flows for incompressible inviscid fluids
76U05 General theory of rotating fluids
35B65 Smoothness and regularity of solutions to PDEs

Citations:

Zbl 1355.35110
Full Text: DOI

References:

[1] Bae, Hantaek; Kelliher, James P., Striated regularity for the Euler equations (2015)
[2] Bertozzi, Andrea L.; Constantin, Peter, Global regularity for vortex patches, Commun. Math. Phys., 152, 1, 19-28 (1993) · Zbl 0771.76014
[3] Bertozzi, Andrea L.; Garnett, John B.; Laurent, Thomas; Verdera, Joan, The regularity of the boundary of a multidimensional aggregation patch, SIAM J. Math. Anal., 48, 6, 3789-3819 (2016) · Zbl 1355.35110
[4] Bertozzi, Andrea L.; Laurent, Thomas; Léger, Flavien, Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions, Math. Models Methods Appl. Sci., 22, suppl. 1, Article 1140005 pp. (2012) · Zbl 1241.35153
[5] Bony, Jean-Michel, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér. (4), 14, 2, 209-246 (1981) · Zbl 0495.35024
[6] Bouchut, François; Desvillettes, Laurent, On two-dimensional Hamiltonian transport equations with continuous coefficients, Differ. Integral Equ., 14, 8, 1015-1024 (2001) · Zbl 1028.35042
[7] Chemin, Jean-Yves, Existence globale pour le problème des poches de tourbillon, C. R. Acad. Sci., Sér. 1 Math., 312, 11, 803-806 (1991) · Zbl 0735.76014
[8] Chemin, Jean-Yves, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels, Ann. Sci. Éc. Norm. Supér. (4), 26, 4, 517-542 (1993) · Zbl 0779.76011
[9] Chemin, Jean-Yves, Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and Its Applications, vol. 14 (1998), The Clarendon Press Oxford University Press: The Clarendon Press Oxford University Press New York, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie · Zbl 0927.76002
[10] Cozzi, Elaine; Gie, Gung-Min; Kelliher, James P., The aggregation equation with Newtonian potential: the vanishing viscosity limit, J. Math. Anal. Appl., 453, 2, 841-893 (2017) · Zbl 1369.35054
[11] Danchin, Raphaël, Persistance de structures géométriques et limite non visqueuse pour les fluides incompressibles en dimension quelconque, Bull. Soc. Math. Fr., 127, 2, 179-227 (1999) · Zbl 0937.35124
[12] Fanelli, Francesco, Conservation of geometric structures for non-homogeneous inviscid incompressible fluids, Commun. Partial Differ. Equ., 37, 9, 1553-1595 (2012) · Zbl 1256.35070
[13] Foote, Robert L., Regularity of the distance function, Proc. Am. Math. Soc., 92, 1, 153-155 (1984) · Zbl 0528.53005
[14] Gamblin, Pascal; Saint Raymond, Xavier, On three-dimensional vortex patches, Bull. Soc. Math. Fr., 123, 3, 375-424 (1995) · Zbl 0844.76013
[15] Kelliher, James P., Expanding domain limit for incompressible fluids in the plane, Commun. Math. Phys., 278, 3, 753-773 (2008) · Zbl 1152.76017
[16] Majda, Andrew J., Vorticity and the mathematical theory of incompressible fluid flow, Frontiers of the Mathematical Sciences: 1985. Frontiers of the Mathematical Sciences: 1985, New York, 1985. Frontiers of the Mathematical Sciences: 1985. Frontiers of the Mathematical Sciences: 1985, New York, 1985, Commun. Pure Appl. Math., 39, S, suppl., S187-S220 (1986) · Zbl 0595.76021
[17] Majda, Andrew J.; Bertozzi, Andrea L., Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27 (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0983.76001
[18] Serfati, Philippe, Etude mathématique de flammes infiniment minces en combustion. Résultats de structure et de régularité pour l’équation d’Euler incompressible (1992), University Paris 6, Thesis
[19] Serfati, Philippe, Régularité stratifiée et équation d’Euler 3D à temps grand, C. R. Acad. Sci., Sér. 1 Math., 318, 10, 925-928 (1994) · Zbl 0805.76009
[20] Serfati, Philippe, Une preuve directe d’existence globale des vortex patches 2D, C. R. Acad. Sci., Sér. 1 Math., 318, 6, 515-518 (1994) · Zbl 0803.76022
[21] Wheeden, Richard L.; Zygmund, Antoni, Measure and integral, (An Introduction to Real Analysis. An Introduction to Real Analysis, Pure and Applied Mathematics, vol. 43 (1977), Marcel Dekker Inc.: Marcel Dekker Inc. New York) · Zbl 0362.26004
[22] Yudovich, Viktor Iosifovich, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. Mat. Fiz., 3, 1032-1066 (1963), (Russian) · Zbl 0129.19402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.