×

An explication of finite-time stability for fractional delay model with neutral impulsive conditions. (English) Zbl 1508.34099

Summary: The article deals with the analysis of finite time stability (FTS) of multi state neutral fractional order systems with impulsive perturbations and state delays. FTS studies about the trajectories of a dynamical system which converge to equilibrium state in a short period of time. Gronwall’s inequality is used as a main tool to derive the FTS conditions. The obtained theoretical results are validated with appropriate numerical simulations.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K40 Neutral functional-differential equations
34K45 Functional-differential equations with impulses
34K25 Asymptotic theory of functional-differential equations
34K35 Control problems for functional-differential equations
93D40 Finite-time stability
Full Text: DOI

References:

[1] Abbas, S.; Benchohra, M.; Nieto, JJ, Caputo-Fabrizio fractional differential equations with non instantaneous impulses, Rendiconti del Circolo Matematico di Palermo Series, 2, 71, 131-144 (2022) · Zbl 1503.34004 · doi:10.1007/s12215-020-00591-6
[2] Arthi, G.; Brindha, N., On finite-time stability of nonlinear fractional-order systems with impulses and multi-state time delays, Results Control Optim. (2021) · Zbl 1494.34012 · doi:10.1016/j.rico.2021.100010
[3] Beta, S., On the constrained controllability of dynamical systems with multiple delays in the state, Int. J. Appl. Math. Comput. Sci., 13, 4, 469-479 (2003) · Zbl 1042.93010
[4] Bhat, SP; Bernstein, DS, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[5] Debbouche, A.; Nieto, JJ, Relaxation in controlled systems described by fractional integro-differential equations with nonlocal control conditions, Electron. J. Differ. Equ., 2015, 89, 1-18 (2015) · Zbl 1311.93039
[6] Debbouche, A.; Nieto, JJ, Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls, Appl. Math. Comput., 245, 74-85 (2014) · Zbl 1335.34014
[7] Farid, Y.; Ruggiero, F., Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: application to ball-juggler robots, Mech. Mach. Theory (2022) · doi:10.1016/j.mechmachtheory.2021.104577
[8] Feckan, M.; Zhou, Y.; Wang, JR, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17, 3050-3060 (2012) · Zbl 1252.35277 · doi:10.1016/j.cnsns.2011.11.017
[9] He, J.; Kong, F.; Nieto, JJ; Qui, H., Globally exponential stability of piecewise pseudo almost periodic solutions for neutral differential equations with impulses and delays, Qual. Theory Dyn. Syst. (2022) · Zbl 1496.34108 · doi:10.1007/s12346-022-00578-x
[10] Hei, XD; Wu, RC, Finite-time stability of impulsive fractional-order systems with time-delay, Appl. Math. Model., 40, 4285-4290 (2016) · Zbl 1459.34020 · doi:10.1016/j.apm.2015.11.012
[11] Hilal, K.; Allauoi, Y., Existence of solution of neutral fractional impulsive differential equations with infinite delay, General Lett. Math., 2, 2, 73-83 (2017) · doi:10.31559/GLM2016.2.2.6
[12] Klamka, J.; Babiarz, A.; Czornik, A.; Niezabitowski, M., Controllability and stability of semilinear fractional order systems, Stud. Syst. Decis. Control, 296, 267-290 (2021) · Zbl 1481.93013 · doi:10.1007/978-3-030-48587-0_9
[13] Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Ravichandran, C., Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness, Asian J. Control, 24, 1406-1415 (2021) · Zbl 07887061 · doi:10.1002/asjc.2549
[14] Kumar, V.; Malik, M.; Debbouche, A., Total controllability of neutral fractional differential equation with non-instantaneous impulsive effects, J. Comput. Appl. Math., 383, 113-158 (2021) · Zbl 1448.93029 · doi:10.1016/j.cam.2020.113158
[15] Kumar, V.; Malik, M.; Debbouche, A., Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses, Appl. Math. Comput. (2021) · Zbl 1474.34384 · doi:10.1016/j.amc.2020.125633
[16] Lazarevic, MP; Spasic, AM, Finite-time stability analysis of fractional-order time-delay systems: Gronwall’s approach, Math. Comput. Model., 49, 475-481 (2009) · Zbl 1165.34408 · doi:10.1016/j.mcm.2008.09.011
[17] Lee, L.; Liu, Y.; Liang, J.; Cai, X., Finite time stability of nonlinear impulsive systems and its applications in sampled-data systems, ISA Trans., 57, 172-178 (2015) · doi:10.1016/j.isatra.2015.02.001
[18] Li, M.; Wang, JR, Finite-time stability and relative controllability of Riemann-Liouville fractional delay differential equations, Math. Methods Appl. Sci., 42, 6607-6623 (2019) · Zbl 1440.34082 · doi:10.1002/mma.5765
[19] Li, M.; Wang, JR, Finite-time stability of fractional delay differential equations, Appl. Math. Lett., 64, 170-176 (2017) · Zbl 1354.34130 · doi:10.1016/j.aml.2016.09.004
[20] Liu, Y.; Huang, HZ, Reliability assessment for fuzzy multi-state systems, Int. J. Syst. Sci., 41, 365-379 (2010) · Zbl 1301.93147 · doi:10.1080/00207720903042939
[21] Luo, D.; Luo, Z., Existence of solutions for fractional differential inclusions with initial value condition and non-instantaneous impulses, Filomat, 33, 5499-5510 (2019) · Zbl 1499.34068 · doi:10.2298/FIL1917499L
[22] Magin, R., Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32, 1, 1-104 (2004) · doi:10.1615/CritRevBiomedEng.v32.i1.10
[23] Malik, M.; Kumar, A.; Feckan, M., Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Univ. Sci., 30, 204-213 (2018) · doi:10.1016/j.jksus.2016.11.005
[24] Miller, KS; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), New York: Wiley, New York · Zbl 0789.26002
[25] Nisar, KS; Jothimani, K.; Kaliraj, K.; Ravichandran, C., An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Solitons Fractals (2021) · Zbl 1498.34215 · doi:10.1016/j.chaos.2021.110915
[26] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of Their Applications (1999), Academic Press · Zbl 0924.34008
[27] Ravichandran, C.; Valliammal, N.; Nieto, JJ, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Frankl. Inst., 356, 1535-1565 (2019) · Zbl 1451.93032 · doi:10.1016/j.jfranklin.2018.12.001
[28] Tarasov, VE, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (2011), Springer
[29] Tian, Y.; Wang, JR; Zhou, Y., Almost periodic solutions for a class of non-instantaneous impulsive differential equations, Quaest. Math., 42, 885-905 (2019) · Zbl 1436.34041 · doi:10.2989/16073606.2018.1499562
[30] Tuan, HT; Czornik, A.; Nieto, JJ; Niezabitowski, ML, Global attractivity for some classes of Riemann-Liouville fractional differential systems, J. Integral Equ. Appl., 31, 265-282 (2019) · Zbl 1431.34013 · doi:10.1216/JIE-2019-31-2-265
[31] Wang, JR; Feckan, M., A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal., 46, 915-933 (2015) · Zbl 1381.34081
[32] Wang, JR; Feckan, M., Non-instantaneous Impulsive Differential Equations: Basic Theory and Computation (2018), Institute of Physics Publishing
[33] Wang, JR; Ibrahim, AG; Feckan, M.; Zhou, Y., Controllability of fractional non-instantaneous impulsive differential inclusions without compactness, IMA J. Math. Control Inf., 36, 443-460 (2019) · Zbl 1475.93018 · doi:10.1093/imamci/dnx055
[34] Wang, G.; Ahmad, B.; Zhang, L.; Nieto, JJ, Comments on the concept of existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 19, 401-403 (2013) · Zbl 1470.34031 · doi:10.1016/j.cnsns.2013.04.003
[35] Wu, KN; Na, MY; Wang, L.; Ding, X.; Wu, B., Finite-time stability of impulsive reaction-diffusion systems with and without time delay, Appl. Math. Comput. (2019) · Zbl 1433.35176 · doi:10.1016/j.amc.2019.124591
[36] Wu, S., Joint importance of multistate systems, Comput. Ind. Eng., 49, 63-75 (2005) · doi:10.1016/j.cie.2005.02.001
[37] Ye, H.; Gao, J.; Ding, Y., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328, 1075-1081 (2007) · Zbl 1120.26003 · doi:10.1016/j.jmaa.2006.05.061
[38] Zhang, X.; Li, C.; Huang, T., Impacts of state-dependent impulses on the stability of switching Cohen-Grossberg neural networks, Adv. Differ. Equ., 2017, 316 (2017) · Zbl 1444.92004 · doi:10.1186/s13662-017-1375-z
[39] Zhou, Y.; Jiao, F., Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59, 1063-1077 (2010) · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
[40] Zong-Yao, S.; Yu, S.; Chih-Chiang, C., Fast finite-time stability and its application in adaptive control of high-order nonlinear system, Automatica, 106, 339-348 (2019) · Zbl 1429.93323 · doi:10.1016/j.automatica.2019.05.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.