×

Finite-time stability of multiterm fractional nonlinear systems with multistate time delay. (English) Zbl 1494.34012


MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34K20 Stability theory of functional-differential equations
34K37 Functional-differential equations with fractional derivatives
93D40 Finite-time stability

References:

[1] Abbas, S.; Benchohra, M.; N’Gurkata, G. M., Topics in Fractional Differential Equations (2012), Berlin: Springer, Berlin · Zbl 1273.35001 · doi:10.1007/978-1-4614-4036-9
[2] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus Models and Numerical Methods (2012), Singapore: World Scientific, Singapore · Zbl 1248.26011 · doi:10.1142/8180
[3] Chen, C.; Jia, B.; Liu, X.; Erbe, L., Existence and uniqueness theorem of the solution to a class of nonlinear nabla fractional difference system with a time delay, Mediterr. J. Math., 15 (2018) · Zbl 1403.39003 · doi:10.1007/s00009-018-1258-x
[4] Chen, L.; Hao, Y.; Huang, T.; Yuan, L.; Zheng, S.; Yin, L., Chaos in fractional-order discrete neural networks with application to image encryption, Neural Netw., 125, 174-184 (2020) · doi:10.1016/j.neunet.2020.02.008
[5] Chen, L.; Wu, R.; He, Y.; Yin, L., Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties, Appl. Math. Comput., 257, 274-284 (2015) · Zbl 1338.93293
[6] Deng, W.; Li, C.; Lü, J., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[7] Dragomir, S. S., Some Gronwall Type Inequalities and Applications (2003), New York: Nova Science, New York · Zbl 1094.34001
[8] Du, F.; Jia, B., Finite-time stability of a class of nonlinear fractional delay difference systems, Appl. Math. Lett., 98, 233-239 (2019) · Zbl 1473.39026 · doi:10.1016/j.aml.2019.06.017
[9] Du, F.; Jia, B., Finite-time stability of nonlinear fractional order systems with a constant delay, J. Nonlinear Model. Anal., 2, 1-13 (2020)
[10] Du, F.; Lu, J. G., Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities, Appl. Math. Comput., 375 (2020)
[11] Du, F., Lu, J.G.: New criteria on finite-time stability of fractional-order hopfield neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. (2020)
[12] Du, F.; Lu, J. G., New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay, Appl. Math. Comput., 389 (2021) · Zbl 1508.34058
[13] Gorenflo, R.; Mainardi, F.; Srivastava, H. M.; Bainov, D., Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena, Proc. VIII International Colloquium on Differential Equations, Plovdiv 1997, 195-202 (1998), Utrecht: VSP (International Science Publishers), Utrecht · Zbl 0921.33009
[14] Hei, X.; Wu, R., Finite-time stability of impulsive fractional-order systems with time-delay, Appl. Math. Model., 40, 4285-4290 (2016) · Zbl 1459.34020 · doi:10.1016/j.apm.2015.11.012
[15] Huang, H.; Fu, X., Approximate controllability of semi-linear stochastic integro-differential equations with infinite delay, IMA J. Math. Control Inf., 37, 1133-1167 (2020) · Zbl 1514.93029 · doi:10.1093/imamci/dnz040
[16] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[17] Lazarevic, M. P.; Spasic, A. M., Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach, Math. Comput. Model., 49, 475-481 (2009) · Zbl 1165.34408 · doi:10.1016/j.mcm.2008.09.011
[18] Li, M.; Wang, J., Finite time stability of fractional delay differential equations, Appl. Math. Lett., 64, 170-176 (2017) · Zbl 1354.34130 · doi:10.1016/j.aml.2016.09.004
[19] Li, P.; Chen, L.; Wu, R.; Machado, J. T.; Lopes, A. M.; Yuan, L., Robust asymptotic stability of interval fractional-order nonlinear systems with time-delay, J. Franklin Inst., 355, 7749-7763 (2018) · Zbl 1398.93281 · doi:10.1016/j.jfranklin.2018.08.017
[20] Li, Y.; Chen, Y.; Podlubny, I., Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 1965-1969 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[21] Liang, C.; Wei, W.; Wang, J., Stability of delay differential equations via delayed matrix sine and cosine of polynomial degrees, Adv. Differ. Equ., 2017 (2017) · Zbl 1422.34209 · doi:10.1186/s13662-017-1188-0
[22] Liu, L.; Zhong, S., Finite-time stability analysis of fractional-order with multistate time delay, Int. J. Math. Comput. Sci., 5, 641-644 (2011)
[23] Ma, Y. J.; Wu, B. W.; Wang, Y. E., Finite-time stability and finite-time boundedness of fractional order linear systems, Neurocomputing, 173, 2076-2082 (2016) · doi:10.1016/j.neucom.2015.09.080
[24] Ma, Y. K.; Arthi, G.; Marshal Anthoni, S., Exponential stability behavior of neutral stochastic integrodifferential equations with fractional Brownian motion and impulsive effects, Adv. Differ. Equ., 2018 (2018) · Zbl 1445.60034 · doi:10.1186/s13662-018-1562-6
[25] Mathiyalagan, K.; Balachandran, K., Finite-time stability of fractional-order stochastic singular systems with time delay and white noise, Complexity, 21, S2, 370-379 (2016) · doi:10.1002/cplx.21815
[26] Mathiyalagan, K.; Sangeetha, G., Second-order sliding mode control for nonlinear fractional-order systems, Appl. Math. Comput., 383 (2020) · Zbl 1508.93054
[27] Naifar, O.; Nagy, A. M.; Makhlouf, A. B.; Kharrat, M.; Hammami, M. A., Finite-time stability of linear fractional-order time-delay systems, Int. J. Robust Nonlinear Control, 29, 180-187 (2019) · Zbl 1411.93135 · doi:10.1002/rnc.4388
[28] Narahari Achar, B. N.; Hanneken, J. W.; Clarke, T., Response characteristics of a fractional oscillator, Phys. A, Stat. Mech. Appl., 309, 275-288 (2002) · Zbl 0995.70017 · doi:10.1016/S0378-4371(02)00609-X
[29] Ngoc, P. H.A., Stability of periodic solutions of nonlinear time-delay systems, IMA J. Math. Control Inf., 34, 905-918 (2017) · Zbl 1417.93267
[30] Phat, V. N.; Thanh, N. T., New criteria for finite-time stability of nonlinear fractional-order delay systems: a Gronwall inequality approach, Appl. Math. Lett., 83, 169-175 (2018) · Zbl 1388.93064 · doi:10.1016/j.aml.2018.03.023
[31] Podlubny, I., Fractional Differential Equations (1998), New York: Academic Press, New York · Zbl 0922.45001
[32] Puangmalai, J.; Tongkum, J.; Rojsiraphisal, T., Finite-time stability criteria of linear system with non-differentiable time-varying delay via new integral inequality, Math. Comput. Simul., 171, 170-186 (2020) · Zbl 1510.93276 · doi:10.1016/j.matcom.2019.06.013
[33] Sheng, J.; Jiang, W., Existence and uniqueness of the solution of fractional damped dynamical systems, Adv. Differ. Equ., 2017 (2017) · Zbl 1422.34061 · doi:10.1186/s13662-016-1049-2
[34] Thanh, N. T.; Phat, V. N.; Niamsup, P., New finite-time stability analysis of singular fractional differential equations with time-varying delay, Fract. Calc. Appl. Anal., 23, 504-519 (2020) · Zbl 1453.34102 · doi:10.1515/fca-2020-0024
[35] Tuan, H. T.; Siegmund, S., Stability of scalar nonlinear fractional differential equations with linearly dominated delay, Fract. Calc. Appl. Anal., 23, 250-267 (2020) · Zbl 1441.34084 · doi:10.1515/fca-2020-0010
[36] Wu, G. C.; Baleanu, D.; Zeng, S. D., Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion, Commun. Nonlinear Sci. Numer. Simul., 57, 299-308 (2018) · Zbl 1510.39014 · doi:10.1016/j.cnsns.2017.09.001
[37] Xu, K.; Chen, L.; Wang, M.; Lopes, A. M.; Tenreiro Machado, J. A.; Zhai, H., Improved decentralized fractional PD control of structure vibrations, Mathematics, 8 (2020) · doi:10.3390/math8030326
[38] Ye, H.; Gao, J.; Ding, Y., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328, 1075-1081 (2007) · Zbl 1120.26003 · doi:10.1016/j.jmaa.2006.05.061
[39] Yonggang, K.; Xiu’e, Z., Some comparison of two fractional oscillator, Physica B, Condens. Matter, 405, 369-373 (2010) · doi:10.1016/j.physb.2009.08.092
[40] You, Z.; Wang, J., On the exponential stability of nonlinear delay systems with impulses, IMA J. Math. Control Inf., 35, 773-803 (2018) · Zbl 1402.93217 · doi:10.1093/imamci/dnw077
[41] Yu, J.; Hu, H.; Zhou, S.; Lin, X., Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems, Automatica, 49, 1798-1803 (2013) · Zbl 1360.93513 · doi:10.1016/j.automatica.2013.02.041
[42] Zhang, C.; Niu, Y., The stability relation between ordinary and delay-integro-differential equations, Math. Comput. Model., 49, 13-19 (2009) · Zbl 1173.34044 · doi:10.1016/j.mcm.2008.07.036
[43] Zhang, F.; Qian, D.; Li, C., Finite-time stability analysis of fractional differential systems with variable coefficients, Chaos, 29 (2019) · Zbl 1406.34026
[44] Zhang, R.; Tian, G.; Yang, S.; Cao, H., Stability analysis of a class of fractional order nonlinear systems with order lying in (0, 2), ISA Trans., 56, 102-110 (2015) · doi:10.1016/j.isatra.2014.12.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.