×

An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain. (English) Zbl 1498.34215

Summary: In this article, the controllability results of the non-dense Hilfer neutral fractional derivative (HNFD) are presented. The results are acknowledged using semigroup theory, fractional calculus, Banach contraction principle, and Mönch technique. Moreover, a numerical analysis is given to enhance our model.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K30 Functional-differential equations in abstract spaces
47D06 One-parameter semigroups and linear evolution equations
47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.
93B05 Controllability
Full Text: DOI

References:

[1] Agarwal, P.; Baleanu, D.; Quan, Y.; Momani, C. S.; Machado, J. A., Fractional calculus-models, algorithms, technology (2018), Springer: Springer Singapore
[2] Bahaa, G. M., Optimal control problem and maximum principle for fractional order cooperative systems, Kybernetika, 55, 2, 337-358 (2019) · Zbl 1463.49005
[3] Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Nisar, K. S., A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems, Chaos Solitons Fractals, 142, 110472 (2020) · Zbl 1496.34111
[4] Du, J.; Jiang, W.; Pang, D.; Niazi, A. U.K., Exact controllability for Hilfer fractional differential inclusions involving nonlocal initial conditions, Complexity, 2018, 1-13 (2018) · Zbl 1420.34010
[5] Fu, X. L., On solutions of neutral nonlocal evolution equations with non-dense domain, J Math Anal Appl, 299, 392-410 (2004) · Zbl 1064.34065
[6] Fu, X.; Liu, X., Controllability of non-densely defined neutral functional differential systems in abstract space, Chin Ann Math, 28, 2, 243-252 (2007) · Zbl 1127.34047
[7] Furati, K. M.; Kassim, M. D.; Tatar, N. E., Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput Math Appl, 64, 1616-1626 (2012) · Zbl 1268.34013
[8] Gatsori, E. P., Controllability results for non-densely defined evolution differential inclusions with nonlocal conditions, J Math Anal Appl, 297, 194-211 (2004) · Zbl 1059.34037
[9] Ghandehari, M. A.M.; Ranjbar, M., A numerical method for solving a fractional partial differential equation through converting it into an NLP problem, Comput Math Appl, 65, 7, 975-982 (2013) · Zbl 1266.90181
[10] Gu, H.; Zhou, Y.; Ahmad, B.; Alsaedi, A., Integral solutions of fractional evolution equations with non-dense domain, Electron J Differ Equ, 145, 1-15 (2017) · Zbl 1377.34010
[11] Gu, H.; Trujillo, J. J., Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl Math Comput, 257, 344-354 (2015) · Zbl 1338.34014
[12] Harrat, A.; Nieto, J. J.; Debbouche, A., Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with clarke subdifferential, J Comput Appl Math, 344, 725-737 (2018) · Zbl 1393.49026
[13] Hilfer, R., Applications of fractional calculus in physics (2000), World Scientific: World Scientific Singapore · Zbl 0998.26002
[14] Hilfer, R.; Luchko, Y.; Tomovski, Z., Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract Calc Appl Anal, 12, 289-318 (2009) · Zbl 1182.26011
[15] Herrera, D. E.B.; Galeano, N. M., A numerical method for solving Caputo’s and Riemann-Liouville’s fractional differential equations which includes multi-order fractional derivatives and variable coefficients, Commun Nonlinear Sci Numer Simul, 84 (2020) · Zbl 1450.65062
[16] Jothimani, K.; Kaliraj, K.; Hammouch, Z.; Ravichandran, C., New results on controllability in the framework of fractional integro-differential equations with non-dense domain, Eur Phys J Plus, 134, 441, 1-10 (2019)
[17] Kavitha, K.; Vijayakumar, V.; Udhayakumar, R., Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos Solitons Fractals, 139, 1-9 (2020) · Zbl 1490.34091
[18] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations, North-Holland mathematics studies, 204 (2006), Elsevier Science: Elsevier Science Amsterdam · Zbl 1092.45003
[19] Kucche, K. D.; Chang, Y. K.; Ravichandran, C., Results on non-densely defined impulsive Volterra functional integro-differential equations with infinite delay, Nonlinear Stud, 23, 4, 651-664 (2016) · Zbl 1357.45008
[20] Kumar, A.; Pandey, D. N., Controllability results for non-densely defined impulsive fractional differential equations in abstract space, Differ Equ Dyn Syst, 29, 227-237 (2021) · Zbl 1466.34069
[21] Lakshmikantham, V.; Leela, S.; Devi, J. V., Theory of fractional dynamic systems (2009), Cambridge Scientific Publishers · Zbl 1188.37002
[22] Lv, J.; Yang, X., Approximate controllability of Hilfer fractional differential equations, Math Methods Appl Sci, 43, 1, 242-254 (2020) · Zbl 1451.93030
[23] Liu, X.; Li, Y.; Xu, G., On the finite approximate controllability for Hilfer fractional evolution systems, Adv Differ Equ, 22, 2020 (2020) · Zbl 1487.93013
[24] Pazy, A., Semigroups of linear operators and applications to partial differential equations (1983), Springer-verlag: Springer-verlag New York · Zbl 0516.47023
[25] Pan, X.; Li, X.; Zhao, J., Solvability and optimal controls of semi linear Riemann-Liouville fractional differential equations, Abstr Appl Anal, 2014, 216919 (2014) · Zbl 1472.49013
[26] Podlubny, I., Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1999), Academic Press: Academic Press San Diego · Zbl 0924.34008
[27] Prato, G. D.; Sinestrari, E., Differential operators with non-dense domain, Ann Della Scuola Norm SuperPisa, 14, 285-344 (1987) · Zbl 0652.34069
[28] Qin, H.; Zuo, X.; Liu, J.; Liu, L., Approximate controllability and optimal controls of fractional dynamical systems of order \(1 < q < 2\) in Banach space, Adv Differ Equ, 73, 2015 (2015) · Zbl 1346.49007
[29] Ravichandran, C.; Valliammal, N.; Nieto, J. J., New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J Frankl Inst, 356, 3, 1535-1565 (2019) · Zbl 1451.93032
[30] Sousa, J. V.C.; Kucche, K. D.; de Oliveira, E. C., On the Ulam-Hyers stabilities of the solutions of \(\psi \)-Hilfer fractional differential equation with abstract Volterra operator, Math Methods Appl Sci, 42, 9, 3021-3032 (2019) · Zbl 1423.34089
[31] Subashini, R.; Ravichandran, C.; Jothimani, K.; Baskonus, H. M., Existence results of Hilfer integro-differential equations with fractional order, Discrete Contin Dyn Syst Ser S, 13, 3, 911-923 (2018) · Zbl 1450.45006
[32] Subashini, R.; Jothimani, K.; Nisar, K. S.; Ravichandran, C., New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alexandria Eng J, 59, 5, 2891-2899 (2020)
[33] Singh, V., Controllability of Hilfer fractional differential systems with non-dense domain, Numer Funct Anal Optim, 40, 13, 1572-1592 (2019) · Zbl 1421.34006
[34] Vijayakumar, V., Approximate controllability results for non-densely defined fractional neutral differential inclusions with Hille Yosida operators, Internat J Control (2018) · Zbl 1421.93023
[35] Vijayakumar, V.; Udhayakumar, R., Results on approximate controllability for non-densely defined Hilfer fractional differential system with infinite delay, Chaos Solitons Fractals, 139, 1-9 (2020) · Zbl 1490.93018
[36] Vijayakumar, V.; Udhayakumar, R., A new exploration on existence of Sobolev-type Hilfer fractional neutral integro-differential equations with infinite delay, Numer Methods Partial Differ Equ, 37, 1, 1-17 (2020)
[37] Wang, J. R.; Zhang, Y., Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl Math Comput, 266, 850-859 (2015) · Zbl 1410.34032
[38] Wang, J. R.; Ibrahim, A. G.; O’Regan, D., Finite approximate controllability of Hilfer fractional semilinear differential equations, Miskolc Math Notes, 21, 1, 489-507 (2020) · Zbl 1474.93022
[39] Wang, J. R.; Ibrahim, G.; O’Regan, D., Controllability of Hilfer fractional noninstantaneous impulsive semilinear differential inclusions with nonlocal conditions, Nonlinear Anal Model Control, 24, 6, 743-762 (2019)
[40] Wang, J. R.; Liu, X.; O’Regan, D., On the approximate controllability for Hilfer fractional evolution hemivariational inequalities, Numer Funct Anal Optim, 40, 7, 958-984 (2019)
[41] Yang, M.; Alsaedi, A.; Ahmad, B.; Zhou, Y., Attractivity for Hilfer fractional stochastic evolution equations, Adv Differ Equ, 130, 2020 (2020) · Zbl 1482.34039
[42] Yang, M.; Wang, Q. R., Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions, Math Methods Appl Sci, 40, 4, 1126-1138 (2017) · Zbl 1366.34012
[43] You, Z.; Feckan, M.; Wang, J. R., Relative controllability of fractional delay differential equations via delayed perturbation of Mittag-Leffler functions, J Comput Appl Math, 378 (2020) · Zbl 1443.93037
[44] Zhang, Z.; Liu, B., Controllability results for fractional functional differential equations with non-dense domain, Numer Funct Anal Optim, 35, 4, 443-460 (2014) · Zbl 1291.93048
[45] Zhang, J.; Wang, J. R.; Zhou, Y., Numerical analysis for time-fractional schrodinger equation on two space dimensions, Adv Differ Equ, 53, 2020 (2020) · Zbl 1487.65174
[46] Zhou, Y.; Vijayakumar, V.; Ravichandran, C.; Murugesu, R., Controllability results for fractional order neutral functional differential inclusions with infinite delay, Fixed Point Theory, 18, 2, 773-798 (2017) · Zbl 1383.34098
[47] Zhou, Y.; Jiao, F., Nonlocal cauchy problem for fractional evolution equations, Nonlinear Anal Real World Appl, 11, 4465-4475 (2010) · Zbl 1260.34017
[48] Zhou, Y., Basic theory of fractional differential equations (2014), World Scientific: World Scientific Singapore · Zbl 1336.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.