×

Global stability and Hopf bifurcation of a delayed cooperative species model with density-dependent diffusion. (English) Zbl 1507.35026

Summary: In this article, we have proposed a newly delayed cooperative species model with density-dependent diffusion. Firstly, we prove the existence and uniqueness of positive equilibrium of this model through mathematical analysis method. Then, for this model, we investigate the persistence properties in the case of self-diffusion and global stability of positive equilibrium by constructing Lyapunov function. Further, we discuss the existence problem of Hopf bifurcation deduced by delay. Finally, the theoretical results in this article are verified by carrying out some numerical simulations. The research results show that density dependent diffusion does not affect the stability of the positive equilibrium of the model, but delay does.

MSC:

35B32 Bifurcations in context of PDEs
35B35 Stability in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Álvarez-Caudevilla, P.; Du, Y. H.; Peng, R., Qualitative analysis of a cooperative reaction-diffusion system in a spatiotemporally degenerate environment, SIAM J. Math. Anal., 46, 499-531 (2014) · Zbl 1293.35138
[2] Britton, N. F., Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50, 6, 1663-1688 (1990) · Zbl 0723.92019
[3] Chen, F. D.; Xue, Y. L.; Lin, Q. F.; Xie, X. D., Dynamic behaviors of a Lotka-Volterra commensal symbiosis model with density dependent birth rate, Adv. Differ. Equ., 2018, 1, Article 296 pp. (2018) · Zbl 1448.92182
[4] Ducrot, A.; Fu, X. M.; Magal, P., Turing and Turing-Hopf bifurcations for a reaction diffusion equation with nonlocal advection, J. Nonlinear Sci., 28, 5, 1959-1997 (2018) · Zbl 1403.35129
[5] Rubenstein, Dustin R.; Kealey, J., Cooperation, conflict, and the evolution of complex animal societies, Nat. Edu. Knowl., 3, 10, 78 (2010)
[6] Faria, T.; Oliveira, José J., Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks, J. Differ. Equ., 244, 1049-1079 (2008) · Zbl 1146.34053
[7] Gourley, S. A.; So, J. W.H., Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44, 1, 49-78 (2002) · Zbl 0993.92027
[8] Ji, C. Y.; Liu, Q.; Jiang, D. Q., Dynamics of a stochastic cell-to-cell HIV-1 model with distributed delay, Physica A, 492, 1053-1065 (2017) · Zbl 1514.92133
[9] Ji, G. L.; Ge, Q.; Xu, J. B., Dynamic behaviors of a fractional order two-species cooperative systems with harvesting, Chaos Solitons Fractals, 92, 51-55 (2016) · Zbl 1372.92084
[10] Jiang, H. P.; Tang, X. S., Hopf bifurcation in a diffusive predator-prey model with herd behavior and prey harvesting, J. Appl. Anal. Comput., 9, 671-690 (2019) · Zbl 1461.35032
[11] Li, X. D.; Yang, X. Y.; Huang, T. W., Persistence of delayed cooperative models: impulsive control method, Appl. Math. Comput., 342, 130-146 (2018) · Zbl 1428.34113
[12] Lou, Y.; Tao, Y. S.; Winkler, M., Approaching the ideal free distribution in two-species competition models with fitness-dependent dispersal, SIAM J. Math. Anal., 46, 1228-1262 (2014) · Zbl 1295.35098
[13] Lu, S. P., On the existence of positive periodic solutions to a Lotka Volterra cooperative population model with multiple delays, Nonlinear Anal. TMA, 68, 1746-1753 (2008) · Zbl 1139.34317
[14] Luenberger, D., Introduction to Dynamic Systems-Theory, Models, and Applications (1979), Wiley: Wiley New York · Zbl 0458.93001
[15] Palencia, J. L.D., Regularity and solution profiles along propagation for a cooperative species system with non-linear diffusion, J. Appl. Math. Comput., 68, 2215-2233 (2021) · Zbl 1498.35166
[16] Palencia, J. L.D., Analysis of selfsimilar solutions and a comparison principle for an heterogeneous diffusion cooperative system with advection and non-linear reaction, Comput. Appl. Math., 40, 7, 302 (2021) · Zbl 1499.35589
[17] Palencia, J. L.D., Characterization of traveling waves solutions to an heterogeneous diffusion coupled system with weak advection, Mathematics, 9, 18, 2300 (2021)
[18] Palencia, J. L.D.; Redondo, A. N., Existence, uniqueness and positivity on a free-boundary high order diffusion cooperative system, Res. Appl. Math., 11, Article 100170 pp. (2021) · Zbl 1472.35215
[19] Peng, R., Long-time behaviour of a cooperative periodic-parabolic system: temporal degeneracy versus spatial degeneracy, J. Differ. Equ., 259, 2903-2947 (2015) · Zbl 1433.35163
[20] Peng, R., Long-time behavior of a cooperative periodic-parabolic system: temporal degeneracy versus spatial degeneracy, Calc. Var. Partial Differ. Equ., 53, 179-219 (2015) · Zbl 1365.35085
[21] Sardar, M.; Biswas, S.; Khajanchi, S., The impact of distributed time delay in a tumor-immune interaction system, Chaos Solitons Fractals, 142, Article 110483 pp. (2021) · Zbl 1496.92021
[22] Song, Y. L.; Jiang, H. P.; Liu, Q. X.; Yuan, Y., Spatiotemporal dynamics of the diffusive mussel-algae model near Turing-Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16, 4, 2030-2062 (2017) · Zbl 1382.35035
[23] Song, Y. L.; Wu, S. H.; Wang, H., Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differ. Equ., 267, 6316-6351 (2019) · Zbl 1423.35027
[24] Tang, X. S., Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function, Math. Comput. Simul., 192, 420-429 (2022) · Zbl 1540.92147
[25] Tang, X. S.; Li, J. Z., Chemotaxis induced Turing bifurcation in a partly diffusive bacterial and viral diseases propagation model, Appl. Math. Lett., 100, Article 106037 pp. (2020) · Zbl 1427.92023
[26] Tang, X. S.; Ouyang, P. C., Spatiotemporal dynamics in a diffusive bacterial and viral diseases propagation model with chemotaxis, Qual. Theory Dyn. Syst., 19, 3, 91 (2020) · Zbl 1452.35024
[27] Tang, X. S.; Wang, Z. W.; Yang, J. P., Threshold dynamics and competitive exclusion in a virus infection model with general incidence function and density-dependent diffusion, Complexity, 2020, Article 4923856 pp. (2020) · Zbl 1435.92083
[28] Wang, Q.; Zhang, L., On the multi-dimensional advective Lotka-Volterra competition systems, Nonlinear Anal., Real World Appl., 37, 329-349 (2017) · Zbl 1394.92113
[29] Yang, Y.; Wu, C. F.; Li, Z. X., Forced waves and their asymptotics in a Lotka-Volterra cooperative model under climate change, Appl. Math. Comput., 353, 254-264 (2019) · Zbl 1428.35173
[30] Zhang, F. R.; Li, Y., Stability and Hopf bifurcation of a delayed-diffusive predator-prey model with hyperbolic mortality and nonlinear prey harvesting, Nonlinear Dyn., 88, 1397-1412 (2017) · Zbl 1375.92060
[31] Zhu, Z. L.; Chen, F. D.; Lai, L. Y.; Li, Z., Dynamic behaviors of a discrete may type cooperative system incorporating Michaelis-Menten type harvesting, IAENG Int. J. Appl. Math., 50, 3, 1-10 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.