×

Long-time behavior of a cooperative periodic-parabolic system in a spatiotemporally degenerate environment. (English) Zbl 1433.35163

Summary: This paper is the continuation of our work [P. Álvarez-Caudevilla et al., SIAM J. Math. Anal. 46, No. 1, 499–531 (2014; Zbl 1293.35138); the author, Calc. Var. Partial Differ. Equ. 53, No. 1–2, 179–219 (2015; Zbl 1365.35085)] on the study of the cooperative periodic-parabolic system: \[ \begin{cases} \begin{matrix} \partial_t u - {\Delta} u = \mu u + \alpha(x, t) v - a(x, t) u^p \\ \partial_t v - {\Delta} v = \mu v + \beta(x, t) u - b(x, t) v^q \end{matrix} & \text{in } {\Omega} \times(0, \infty), \\ (\partial_\nu u, \partial_\nu v) = (0, 0) & \text{on } \partial {\Omega} \times(0, \infty), \\ (u(x, 0), v(x, 0)) = (u_0(x), v_0(x)) >(0, 0) & \text{in } {\Omega}, \end{cases} \] where \(p, q > 1\), \({\Omega} \subset \mathbb{R}^N\) (\(N \geq 2\)) is a bounded smooth domain, \(\alpha, \beta > 0\) and \(a, b \geq 0\) are smooth functions that are \(T\)-periodic in \(t\), and \(\mu\) is a varying parameter. The unknown functions \(u(x, t)\) and \(v(x, t)\) stand for the densities of two cooperative species at location \(x\) and time \(t\). The aim of our work is to establish the long-time behavior of \((u, v)\) when the species are exposed to a spatiotemporally degenerate environment. In [Álvarez-Caudevilla et al., loc. cit.; the author, loc. cit.], we dealt with the three cases that \(a\) and \(b\) have simultaneous spatiotemporal degeneracy, simultaneous spatial degeneracy and simultaneous temporal degeneracy. In this paper we consider some other natural situations of degeneracies. Our results reveal further interesting effects of spatial and temporal degeneracies on the dynamics of such a cooperative system. In addition, we provide a sharp improvement of the results in [the author, loc. cit.] when simultaneous temporal degeneracy occurs.

MSC:

35K40 Second-order parabolic systems
35K57 Reaction-diffusion equations
35K65 Degenerate parabolic equations
Full Text: DOI

References:

[1] Álvarez-Caudevilla, P.; Du, Y.; Peng, R., Qualitative analysis of a cooperative reaction-diffusion system in a spatiotemporally degenerate environment, SIAM J. Math. Anal., 46, 499-531 (2014) · Zbl 1293.35138
[2] Álvarez-Caudevilla, P.; Lemenant, A., Asymptotic analysis for some linear eigenvalue problems via gamma-convergence, Adv. Difference Equ., 15, 649-688 (2010) · Zbl 1193.35114
[3] Álvarez-Caudevilla, P.; López-Gómez, J., Asymptotic behaviour of principal eigenvalues for a class of cooperative systems, J. Differential Equations. J. Differential Equations, J. Differential Equations, 245, 566-567 (2008), Corrigendum: · Zbl 1138.35071
[4] Álvarez-Caudevilla, P.; López-Gómez, J., Metasolutions in cooperative systems, Nonlinear Anal. Real World Appl., 9, 1119-1157 (2008) · Zbl 1154.92036
[5] Amann, H., Linear and Quasilinear Parabolic Problems, vol. 1Abstract Linear Theory (1995), Birkhauser Verlag: Birkhauser Verlag Berlin · Zbl 0819.35001
[6] Amann, H.; López-Gómez, J., A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146, 336-374 (1998) · Zbl 0909.35044
[7] Antón, I.; López-Gómez, J., The maximum principle for cooperative periodic-parabolic systems and the existence of principle eigenvalues, (World Congress of Nonlinear Analysts ’92. World Congress of Nonlinear Analysts ’92, Tampa, FL, 1992 (1996), de Gruyter: de Gruyter Berlin), 323-334 · Zbl 0852.35025
[8] Brézis, H.; Oswald, L., Remarks on sublinear elliptic equations, Nonlinear Anal., 10, 55-64 (1986) · Zbl 0593.35045
[9] Dancer, E. N., On the least point spectrum of certain cooperative linear systems with a large parameter, J. Differential Equations, 250, 33-38 (2011) · Zbl 1206.35184
[10] Dancer, E. N.; Du, Y., Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal., 34, 292-314 (2002) · Zbl 1055.35046
[11] Daners, D., Eigenvalue problems for a cooperative system with a large parameter, Adv. Nonlinear Stud., 13, 137-148 (2013) · Zbl 1273.35140
[12] Delfour, M. C.; Zolésio, J. P., Shape analysis via oriented distance functions, J. Funct. Anal., 123, 129-201 (1994) · Zbl 0814.49032
[13] Du, Y., Order Structure and Topological Methods in Nonlinear Partial Differential Equations, vol. 1Maximum Principles and Applications (2006), World Scientific: World Scientific Singapore · Zbl 1202.35043
[14] Du, Y., Effects of a degeneracy in the competition model, I. Classical and generalized steady-state solutions, J. Differential Equations, 181, 92-132 (2002) · Zbl 1042.35016
[15] Du, Y., Effects of a degeneracy in the competition model, II. Perturbation and dynamical behaviour, J. Differential Equations, 181, 133-164 (2002) · Zbl 1042.35017
[16] Du, Y., Realization of prescribed patterns in the competition model, J. Differential Equations, 193, 147-179 (2003) · Zbl 1274.35137
[17] Du, Y.; Guo, Z., The degenerate logistic model and a singularly mixed boundary blow-up problem, Discrete Contin. Dyn. Syst., 14, 1-29 (2006) · Zbl 1194.35148
[18] Du, Y.; Huang, Q., Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal., 31, 1-18 (1999) · Zbl 0959.35065
[19] Du, Y.; Peng, R., The periodic logistic equation with spatial and temporal degeneracies, Trans. Amer. Math. Soc., 364, 6039-6070 (2012) · Zbl 1282.35061
[20] Du, Y.; Peng, R., Sharp spatiotemporal patterns in the diffusive time-periodic logistic equation, J. Differential Equations, 254, 3794-3816 (2013) · Zbl 1439.35205
[21] Du, Y.; Peng, R.; Poláčik, P., The parabolic logistic equation with blow-up initial and boundary values, J. Anal. Math., 118, 297-316 (2012) · Zbl 1308.35127
[22] Du, Y.; Yamada, Y., On the long-time limit of positive solutions to the degenerate logistic equation, Discrete Contin. Dyn. Syst. Ser. A, 25, 123-132 (2009) · Zbl 1179.35073
[23] Fraile, J. M.; Koch, P.; López-Gómez, J.; Merino, S., Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation, J. Differential Equations, 127, 295-319 (1996) · Zbl 0860.35085
[24] García-Melián, J.; Gómez-Reñasco, R.; López-Gómez, J.; Sabina de Lis, J., Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs, Arch. Ration. Mech. Anal., 145, 261-289 (1998) · Zbl 0926.35036
[25] García-Melián, J.; Letelier-Albornoz, R.; Sabina de Lis, J. C., Uniqueness and asymptotic behavior for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., 129, 3593-3602 (2001) · Zbl 0989.35044
[26] Gómez-Reñasco, R.; López-Gómez, J., On the existence and numerical computation of classical and non-classical solutions for a family of elliptic boundary value problems, Nonlinear Anal., 48, 567-605 (2002) · Zbl 1113.35079
[27] Hess, P., Periodic-Parabolic Boundary Value: Problems and Positivity, Pitman Res. Notes in Mathematics, vol. 247 (1991), Longman Sci. Tech.: Longman Sci. Tech. Harlow · Zbl 0731.35050
[28] Ladyzenskaja, O. A.; Solonnikov, V. A.; Uralceva, N. N., Linear and Quasi-Linear Equations of Parabolic Type (1968), AMS: AMS Providence, RI · Zbl 0174.15403
[29] Leadi Liamidi, L.; Quoirin, H. R., Principal eigenvalue for quasilinear cooperative elliptic systems, Differential Integral Equations, 24, 1107-1124 (2011) · Zbl 1249.35125
[30] Lieberman, G. M., Second Order Parabolic Differential Equations (1996), World Scientific Publ. Co., Inc.: World Scientific Publ. Co., Inc. River Edge, NJ · Zbl 0884.35001
[31] López-Gómez, J., Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems, Trans. Amer. Math. Soc., 352, 1825-1858 (2000) · Zbl 0940.35095
[32] López-Gómez, J., Large solutions, metasolutions, and asymptotic behavior of the regular positive solutions of a class of sublinear parabolic problems, Electron. J. Differential Equations, 5, 135-171 (2000) · Zbl 1055.35049
[33] López-Gómez, J., Coexistence and metacoexistence states in competing species models, Houston J. Math., 29, 485-538 (2003)
[34] López-Gómez, J., Metasolutions: Malthus versus Verhulst in population dynamics. A dream of Volterra, (Chipot, M.; Quittner, P., Handbook of Differential Equations Stationary Partial Differential Equations (2005), Elsevier Science B. V., North-Holland: Elsevier Science B. V., North-Holland Amsterdam), 211-309, Chapter 4 · Zbl 1102.35001
[35] Marcus, M.; Véron, L., Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14, 237-274 (1997) · Zbl 0877.35042
[36] Molina-Meyer, M., Existence and uniqueness of coexistence states for some nonlinear elliptic systems, Nonlinear Anal., 25, 279-296 (1995) · Zbl 0878.35047
[37] Molina-Meyer, M., Global attractivity and singular perturbation for a class of nonlinear cooperative systems, J. Differential Equations, 128, 347-378 (1996) · Zbl 0883.35062
[38] Molina-Meyer, M., Uniqueness and existence of positive solutions for weakly coupled general sublinear systems, Nonlinear Anal., 30, 5373-5380 (1997) · Zbl 0895.35030
[39] Ouyang, T., On the positive solutions of semilinear equations \(\Delta u + \lambda u + h u^p = 0\) on compact manifolds, II, Indiana Univ. Math. J., 40, 1083-1141 (1991) · Zbl 0773.35020
[40] Ouyang, T., On the positive solutions of semilinear equations \(\Delta u + \lambda u - h u^p = 0\) on the compact manifolds, Trans. Amer. Math. Soc., 331, 503-527 (1992) · Zbl 0759.35021
[41] Peng, R., Long-time behavior of a periodic-parabolic cooperative system: temporal degeneracy versus spatial degeneracy, Calc. Var. Partial Differential Equations (2015) · Zbl 1365.35085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.