×

Turing and Turing-Hopf bifurcations for a reaction diffusion equation with nonlocal advection. (English) Zbl 1403.35129

Summary: In this paper, we study the stability and the bifurcation properties of the positive interior equilibrium for a reaction-diffusion equation with nonlocal advection. Under rather general assumption on the nonlocal kernel, we first study the local well posedness of the problem in suitable fractional spaces and we obtain stability results for the homogeneous steady state. As a special case, we obtain that “standard” kernels such as Gaussian, Cauchy, Laplace and triangle, will lead to stability. Next we specify the model with a given step function kernel and investigate two types of bifurcations, namely Turing bifurcation and Turing-Hopf bifurcation. In fact, we prove that a single scalar equation may display these two types of bifurcations with the dominant wave number as large as we want. Moreover, similar instabilities can also be observed by using a bimodal kernel. The resulting complex spatiotemporal dynamics are illustrated by numerical simulations.

MSC:

35K55 Nonlinear parabolic equations
35B32 Bifurcations in context of PDEs
35B35 Stability in context of PDEs
Full Text: DOI

References:

[1] Bernoff, AJ; Topaz, CM, Nonlocal aggregation models: a primer of swarm equilibria, SIAM Rev., 55, 709-747, (2013) · Zbl 1282.35003 · doi:10.1137/130925669
[2] Bodnar, M; Velazquez, JJL, An integro-differential equation arising as a limit of individual cell-based models, J. Differ. Equ., 222, 341-380, (2006) · Zbl 1089.45002 · doi:10.1016/j.jde.2005.07.025
[3] Burger, M; Francesco, M, Large time behaviour of nonlocal aggregation models with nonlinear diffusion, Netw. Heterog. Media, 3, 749-785, (2008) · Zbl 1171.35328 · doi:10.3934/nhm.2008.3.749
[4] Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 13. Oxford, Oxford (1998) · Zbl 0926.35049
[5] Crandall, MG; Rabinowitz, PH, Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340, (1971) · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[6] Crandall, MG; Rabinowitz, PH, The Hopf bifurcation theorem in infinite dimensions, Arch. Ration. Mech. Anal., 67, 53-72, (1977) · Zbl 0385.34020 · doi:10.1007/BF00280827
[7] Ducrot, A; Magal, P, Asymptotic behaviour of a non-local diffusive logistic equation, SIAM J. Math. Anal., 46, 1731-1753, (2014) · Zbl 1309.37081 · doi:10.1137/130922100
[8] Ducrot, A; Foll, F; Magal, P; Murakawa, H; Pasquier, J; Webb, GF, An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition, Math. Model. Methods Appl. Sci., 21, 871, (2011) · Zbl 1221.35204 · doi:10.1142/S0218202511005404
[9] Engquist, B; Osher, S, One-sided difference approximations for nonlinear conservation laws, Math. Comput., 36, 321-351, (1981) · Zbl 0469.65067 · doi:10.1090/S0025-5718-1981-0606500-X
[10] Fiedler, B; Polácik, P, Complicated dynamics of scalar reaction diffusion equations with a nonlocal term, Proc. R. Soc. Edinb., 115, 263-276, (1990) · Zbl 0726.35060 · doi:10.1017/S0308210500024641
[11] Haragus, M., Iooss, G.: Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, Universitext. Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, pp. xii+329 (2011) · Zbl 1230.34002
[12] Hassard, B.D., Kazarinoff, N.D., Wan, Y.-H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981) · Zbl 0474.34002
[13] Henry, D.: Geometric Theory of Semilinear Parabolic Equation. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981) · Zbl 0456.35001 · doi:10.1007/BFb0089647
[14] Hillen, T; Painter, K; Schmeiser, C, Global existence for chemotaxis with finite sampling radius, Discrete Contin. Dyn. Syst. Ser. B, 7, 125-144, (2007) · Zbl 1116.92011 · doi:10.3934/dcdsb.2007.7.125
[15] Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002) · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[16] Leverentz, AJ; Topaz, CM; Bernoff, AJ, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst., 8, 880-908, (2009) · Zbl 1168.92045 · doi:10.1137/090749037
[17] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Springer, Berlin (2012) · Zbl 0816.35001
[18] Magal, P; Ruan, S, On semilinear Cauchy problems with non-dense domain, Adv. Differ. Equ., 14, 1041-1084, (2009) · Zbl 1225.47042
[19] Magal, P., Ruan, S.: Theory and Applications of Abstract Semilinear Cauchy Problems. Springer (To appear) · Zbl 1225.47042
[20] Morale, D; Capasso, V; Oelschläger, K, An interacting particle system modelling aggregation behaviour: from individuals to populations, J. Math. Biol., 50, 49-66, (2005) · Zbl 1055.92046 · doi:10.1007/s00285-004-0279-1
[21] Oelschläger, K, Large systems of interacting particles and the porous medium equation, J. Differ. Equ., 88, 294-346, (1990) · Zbl 0734.60101 · doi:10.1016/0022-0396(90)90101-T
[22] Raoul, G, Non-local interaction equations: stationary states and stability analysis, Differ. Integral Equ., 25, 417-440, (2012) · Zbl 1265.35142
[23] Smoller, J.: Shock Waves and Reaction-Diffusion Equations, vol. 258. Springer, Berlin (1983) · Zbl 0508.35002 · doi:10.1007/978-1-4684-0152-3
[24] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, Berlin (2012)
[25] Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford University Press, Oxford (2007) · Zbl 1107.35003
[26] Yagi, A.: Abstract Parabolic Evolution Equations and their Applications. Springer, Berlin (2010) · Zbl 1190.35004 · doi:10.1007/978-3-642-04631-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.