×

Existence and concentration results for the general Kirchhoff-type equations. (English) Zbl 1507.35017

The authors use the penalization method due to Del Pino and Felmer in order to prove the existence of single-peak or multi-peak solution for a nonlocal problem involving the Kirchhoff term. Such solutions concentrating around topologically stable critical points of a potential.
The results that can be found in this article give an affirmative answer to an open problem raised by G. M. Figueiredo et al. [Arch. Ration. Mech. Anal. 213, No. 3, 931–979 (2014; Zbl 1302.35356)].

MSC:

35B25 Singular perturbations in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J62 Quasilinear elliptic equations
35R09 Integro-partial differential equations

Citations:

Zbl 1302.35356

References:

[1] Ambrosetti, A., Malchiodi, A.: Concentration phenomena for nonlinear Schrödinger equations: recent results and new perspectives. In: Perspectives in nonlinear partial differential equations. Contemp. Math., vol. 446, pp. 19-30. American Mathematical Society, Providence (2007) · Zbl 1200.35106
[2] Ambrosetti, A.; Badiale, M.; Cingolani, S., Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140, 3, 285-300 (1997) · Zbl 0896.35042 · doi:10.1007/s002050050067
[3] Ambrosetti, A.; Malchiodi, A.; Secchi, S., Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159, 3, 253-271 (2001) · Zbl 1040.35107 · doi:10.1007/s002050100152
[4] Ambrosetti, A.; Malchiodi, A.; Ni, W-M, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. I, Commun. Math. Phys., 235, 3, 427-466 (2003) · Zbl 1072.35019 · doi:10.1007/s00220-003-0811-y
[5] Bahri, A.; Li, Y.; Rey, O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differ. Eqn., 3, 1, 67-93 (1995) · Zbl 0814.35032 · doi:10.1007/BF01190892
[6] Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4):313-345 (1983) · Zbl 0533.35029
[7] Byeon, J., Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity, Trans. Am. Math. Soc., 362, 4, 1981-2001 (2010) · Zbl 1188.35082 · doi:10.1090/S0002-9947-09-04746-1
[8] Byeon, J.; Jeanjean, L., Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185, 2, 185-200 (2007) · Zbl 1132.35078 · doi:10.1007/s00205-006-0019-3
[9] Byeon, J., Jeanjean, L.: Erratum: standing waves for nonlinear Schrödinger equations with a general nonlinearity [Arch. Ration. Mech. Anal. 185(2), 185-200 (2007); mr2317788]. Arch. Ration. Mech. Anal. 190(3), 549-551 (2008) · Zbl 1173.35636
[10] Byeon, J.; Tanaka, K., Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential, J. Eur. Math. Soc. (JEMS), 15, 5, 1859-1899 (2013) · Zbl 1294.35131 · doi:10.4171/JEMS/407
[11] Byeon, J.; Wang, Z-Q, Standing waves with a critical frequency for nonlinear Schrödinger equations. II, Calc. Var. Partial Differ. Equ., 18, 2, 207-219 (2003) · Zbl 1073.35199 · doi:10.1007/s00526-002-0191-8
[12] Byeon, J.; Jeanjean, L.; Tanaka, K., Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases, Commun. Partial Differ. Equ., 33, 4-6, 1113-1136 (2008) · Zbl 1155.35344 · doi:10.1080/03605300701518174
[13] Byeon, J.; Zhang, J.; Zou, W., Singularly perturbed nonlinear Dirichlet problems involving critical growth, Calc. Var. Partial Differ. Equ., 47, 1-2, 65-85 (2013) · Zbl 1270.35042 · doi:10.1007/s00526-012-0511-6
[14] Cao, D.; Heinz, H-P, Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations, Math. Z., 243, 3, 599-642 (2003) · Zbl 1142.35601 · doi:10.1007/s00209-002-0485-8
[15] Cao, D.; Peng, S., Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity, Commun. Partial Differ. Equ., 34, 10-12, 1566-1591 (2009) · Zbl 1185.35248 · doi:10.1080/03605300903346721
[16] Cao, D.; Dancer, NE; Noussair, ES; Yan, S., On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems, Discret. Contin. Dyn. Syst., 2, 2, 221-236 (1996) · Zbl 0947.35073 · doi:10.3934/dcds.1996.2.221
[17] Cao, D.; Peng, S.; Yan, S., Singularly Perturbed Methods for Nonlinear Elliptic Problems (2005), Cambridge: Cambridge University Press, Cambridge
[18] Cao, D.; Li, S.; Luo, P., Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 54, 4, 4037-4063 (2015) · Zbl 1338.35404 · doi:10.1007/s00526-015-0930-2
[19] Chen, Yu; Ding, Y., Multiplicity and concentration for Kirchhoff type equations around topologically critical points in potential, Topol. Methods Nonlinear Anal., 53, 1, 183-223 (2019) · Zbl 1418.35148
[20] Cingolani, S.; Lazzo, M., Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differ. Equ., 160, 1, 118-138 (2000) · Zbl 0952.35043 · doi:10.1006/jdeq.1999.3662
[21] Cortázar, C.; Elgueta, M.; Felmer, P., Uniqueness of positive solutions of \(\Delta u+f(u)=0\) in \({\textbf{R} }^N, N \ge 3\), Arch. Ration. Mech. Anal., 142, 2, 127-141 (1998) · Zbl 0912.35059
[22] Dancer, EN, Peak solutions without non-degeneracy conditions, J. Differ. Equ., 246, 8, 3077-3088 (2009) · Zbl 1197.35121 · doi:10.1016/j.jde.2009.01.030
[23] d’Avenia, P.; Pomponio, A.; Ruiz, D., Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262, 10, 4600-4633 (2012) · Zbl 1239.35152 · doi:10.1016/j.jfa.2012.03.009
[24] del Pino, M.; Felmer, PL, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4, 2, 121-137 (1996) · Zbl 0844.35032 · doi:10.1007/BF01189950
[25] del Pino, M.; Felmer, PL, Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, 1, 245-265 (1997) · Zbl 0887.35058 · doi:10.1006/jfan.1996.3085
[26] Del Pino, M., Felmer, P.L.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15(2):127-149 (1998) · Zbl 0901.35023
[27] del Pino, M.; Felmer, P., Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324, 1, 1-32 (2002) · Zbl 1030.35031 · doi:10.1007/s002080200327
[28] del Pino, M.; Kowalczyk, M.; Wei, J-C, Concentration on curves for nonlinear Schrödinger equations, Commun. Pure Appl. Math., 60, 1, 113-146 (2007) · Zbl 1123.35003 · doi:10.1002/cpa.20135
[29] Deng, Y.; Peng, S.; Pi, H., Bound states with clustered peaks for nonlinear Schrödinger equations with compactly supported potentials, Adv. Nonlinear Stud., 14, 2, 463-481 (2014) · Zbl 1301.35148 · doi:10.1515/ans-2014-0213
[30] Figueiredo, GM, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401, 2, 706-713 (2013) · Zbl 1307.35110 · doi:10.1016/j.jmaa.2012.12.053
[31] Figueiredo, G.M., Santos Junior, J.R.: Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differ. Integral Equ. 25(9-10), 853-868 (2012) · Zbl 1274.35087
[32] Figueiredo, G.M., Ikoma, N., Santos Júnior, J.R.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213(3):931-979 (2014) · Zbl 1302.35356
[33] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 3, 397-408 (1986) · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[34] Grossi, M., On the number of single-peak solutions of the nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19, 3, 261-280 (2002) · Zbl 1034.35127 · doi:10.1016/s0294-1449(01)00089-0
[35] Gui, C., Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Commun. Partial Differ. Equ., 21, 5-6, 787-820 (1996) · Zbl 0857.35116 · doi:10.1080/03605309608821208
[36] He, Y., Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity, J. Differ. Equ., 261, 11, 6178-6220 (2016) · Zbl 1364.35082 · doi:10.1016/j.jde.2016.08.034
[37] He, X.; Zou, W., Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R} }^3\), J. Differ. Equ., 252, 2, 1813-1834 (2012) · Zbl 1235.35093 · doi:10.1016/j.jde.2011.08.035
[38] He, Y.; Li, G.; Peng, S., Concentrating bound states for Kirchhoff type problems in \({\mathbb{R} }^3\) involving critical Sobolev exponents, Adv. Nonlinear Stud., 14, 2, 483-510 (2014) · Zbl 1305.35033 · doi:10.1515/ans-2014-0214
[39] Jeanjean, L.; Tanaka, K., Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differ. Equ., 21, 3, 287-318 (2004) · Zbl 1060.35012 · doi:10.1007/s00526-003-0261-6
[40] Jeanjean, L., Zhang, J., Zhong, X.: A global branch approach to normalized solutions for the Schrödinger equation. (2021)
[41] Kang, X.; Wei, J., On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differ. Equ., 5, 7-9, 899-928 (2000) · Zbl 1217.35065
[42] Li, YY, On a singularly perturbed elliptic equation, Adv. Differ. Equ., 2, 6, 955-980 (1997) · Zbl 1023.35500
[43] Li, Y.; Nirenberg, L., The Dirichlet problem for singularly perturbed elliptic equations, Commun. Pure Appl. Math., 51, 11-12, 1445-1490 (1998) · Zbl 0933.35083 · doi:10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.0.CO;2-Z
[44] Li, G.; Ye, H., Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R} }^3\), J. Differ. Equ., 257, 2, 566-600 (2014) · Zbl 1290.35051 · doi:10.1016/j.jde.2014.04.011
[45] Li, G.; Ye, H., Existence of positive solutions for nonlinear Kirchhoff type problems in \({\mathbb{R} }^3\) with critical Sobolev exponent, Math. Methods Appl. Sci., 37, 16, 2570-2584 (2014) · Zbl 1303.35009 · doi:10.1002/mma.3000
[46] Li, G.; Luo, P.; Peng, S.; Wang, C.; Xiang, C-L, A singularly perturbed Kirchhoff problem revisited, J. Differ. Equ., 268, 2, 541-589 (2020) · Zbl 1426.35018 · doi:10.1016/j.jde.2019.08.016
[47] Luo, P.; Peng, S.; Wang, C.; Xiang, C-L, Multi-peak positive solutions to a class of Kirchhoff equations, Proc. R. Soc. Edinb. Sect. A, 149, 4, 1097-1122 (2019) · Zbl 1437.35024 · doi:10.1017/prm.2018.108
[48] Noussair, ES; Yan, S., On positive multipeak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc. (2), 62, 1, 213-227 (2000) · Zbl 0977.35048 · doi:10.1112/S002461070000898X
[49] Rabinowitz, PH, On a class of nonlinear schrödinger equations, Z. Angew. Math. Phys., 43, 2, 270-291 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[50] Rey, O.: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89(1), 1-52 (1990) · Zbl 0786.35059
[51] Tingxi, H.; Shuai, W., Multi-peak solutions to Kirchhoff equations in \({\mathbb{R} }^3\) with general nonlinearity, J. Differ. Equ., 265, 8, 3587-3617 (2018) · Zbl 1398.35058 · doi:10.1016/j.jde.2018.05.012
[52] Wang, X., On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., 153, 2, 229-244 (1993) · Zbl 0795.35118 · doi:10.1007/BF02096642
[53] Wang, J.; Tian, L.; Junxiang, X.; Zhang, F., Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253, 7, 2314-2351 (2012) · Zbl 1402.35119 · doi:10.1016/j.jde.2012.05.023
[54] Wang, Z.; Zeng, X.; Zhang, Y., Multi-peak solutions of Kirchhoff equations involving subcritical or critical Sobolev exponents, Math. Methods Appl. Sci., 43, 8, 5151-5161 (2020) · Zbl 1445.35174 · doi:10.1002/mma.6256
[55] Yong-Geun, O., Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class \((V)_a\), Commun. Partial Differ. Equ., 13, 12, 1499-1519 (1988) · Zbl 0702.35228 · doi:10.1080/03605308808820585
[56] Yong-Geun, O., On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys., 131, 2, 223-253 (1990) · Zbl 0753.35097 · doi:10.1007/BF02161413
[57] Zhang, J., Standing waves with a critical frequency for nonlinear Schrödinger equations involving critical growth, Appl. Math. Lett., 63, 53-58 (2017) · Zbl 1351.35199 · doi:10.1016/j.aml.2016.07.012
[58] Zhang, J.; Zou, W., Solutions concentrating around the saddle points of the potential for critical Schrödinger equations, Calc. Var. Partial Differ. Equ., 54, 4, 4119-4142 (2015) · Zbl 1339.35109 · doi:10.1007/s00526-015-0933-z
[59] Zhang, J.; Chen, Z.; Zou, W., Standing waves for nonlinear Schrödinger equations involving critical growth, J. Lond. Math. Soc.(2), 90, 3, 827-844 (2014) · Zbl 1317.35247 · doi:10.1112/jlms/jdu054
[60] Zhang, J.; David G, C.; do Ó. João, M., Existence and concentration of positive solutions for nonlinear Kirchhoff-type problems with a general critical nonlinearity, Proc. Edinb. Math. Soc., 61, 4, 1023-1040 (2018) · Zbl 1421.35122 · doi:10.1017/S0013091518000056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.