×

A singularly perturbed Kirchhoff problem revisited. (English) Zbl 1426.35018

Summary: In this paper, we revisit the singularly perturbation problem \[-(\epsilon^2 a + \epsilon b \int\limits_{\mathbb{R}^3} | \nabla u |^2) \Delta u + V(x) u = |u|^{p - 1} u \quad\text{in } \mathbb{R}^3,\] where \(a, b, \epsilon > 0, 1 < p < 5\) are constants and \(V\) is a potential function. First we establish the uniqueness and nondegeneracy of positive solutions to the limiting Kirchhoff problem \[-(a + b \int\limits_{\mathbb{R}^3} | \nabla u |^2) \Delta u + u = |u|^{p-1} u \quad\text{in } \mathbb{R}^3.\] Then, combining this nondegeneracy result and Lyapunov-Schmidt reduction method, we derive the existence of solutions to (0.1) for \(\epsilon > 0\) sufficiently small. Finally, we establish a local uniqueness result for such derived solutions using this nondegeneracy result and a type of local Pohozaev identity.

MSC:

35B25 Singular perturbations in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35J20 Variational methods for second-order elliptic equations
35R09 Integro-partial differential equations
35J62 Quasilinear elliptic equations

References:

[1] Adachi, S.; Shibata, M.; Watanabe, T., A note on the uniqueness and the non-degeneracy of positive radial solutions for semilinear elliptic problems and its application, preprint at · Zbl 1438.35165
[2] Ambrosetti, A.; Malchiodi, A., Perturbation Methods and Semilinear Elliptic Problems on \(R^N (2006)\), Birkhäuser Verlag · Zbl 1115.35004
[3] Arosio, A.; Panizzi, S., On the well-posedness of the Kirchhoff string, Transl. Am. Math. Soc., 348, 305-330 (1996) · Zbl 0858.35083
[4] Bartsch, T.; Peng, S., Semiclassical symmetric Schrödinger equations: existence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys., 58, 778-804 (2007) · Zbl 1133.35087
[5] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 313-345 (1983) · Zbl 0533.35029
[6] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82, 347-375 (1983) · Zbl 0556.35046
[7] Bernstein, S., Sur une classe d’équations fonctionelles aux dérivées partielles, Bull. Acad. Sci. USSR Sér., 4, 17-26 (1940) · JFM 66.0471.01
[8] Cao, D.; Heinz, H. P., Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations, Math. Z., 243, 599-642 (2003) · Zbl 1142.35601
[9] Cao, D.; Li, S.; Luo, P., Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 54, 4037-4063 (2015) · Zbl 1338.35404
[10] Cao, D.; Noussair, E. S.; Yan, S., Solutions with multiple peaks for nonlinear elliptic equations, Proc. R. Soc. Edinb., 129, 235-264 (2008) · Zbl 0928.35048
[11] Cao, D.; Peng, S., Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity, Commun. Partial Differ. Equ., 34, 1566-1591 (2009) · Zbl 1185.35248
[12] Cingolani, S.; Lazzo, N., Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal., 10, 1-13 (1997) · Zbl 0903.35018
[13] Chang, S.-M.; Gustafson, S.; Nakanishi, K.; Tsai, T.-P., Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., 39, 4, 1070-1111 (2007/2008) · Zbl 1168.35041
[14] D’Ancona, P.; Spagnolo, S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108, 247-262 (1992) · Zbl 0785.35067
[15] Deng, Y.; Peng, S.; Shuai, W., Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \(R^3\), J. Funct. Anal., 269, 3500-3527 (2015) · Zbl 1343.35081
[16] Deng, Y.; Lin, C.-S.; Yan, S., On the prescribed scalar curvature problem in \(R^N\), local uniqueness and periodicity, J. Math. Pures Appl. (9), 104, 1013-1044 (2015) · Zbl 1328.53045
[17] Fall, M. M.; Valdinoci, E., Uniqueness and nondegeneracy of positive solutions of \((- \Delta)^s u + u = u^p\) in \(R^N\) when s is close to 1, Commun. Math. Phys., 329, 383-404 (2014) · Zbl 1304.35746
[18] Figueiredo, G. M.; Ikoma, N.; Santos Júnior, J. R., Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. Anal., 213, 931-979 (2014) · Zbl 1302.35356
[19] Floer, A.; Weinstein, A., Nonspeading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 397-408 (1986) · Zbl 0613.35076
[20] Frank, R. L.; Lenzmann, E., Uniqueness of non-linear ground states for fractional Laplacians in \(R\), Acta Math., 210, 261-318 (2013) · Zbl 1307.35315
[21] Frank, R. L.; Lenzmann, E.; Silvestre, L., Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., 69, 1671-1726 (2016) · Zbl 1365.35206
[22] Glangetas, L., Uniqueness of positive solutions of a nonlinear equation involving the critical exponent, Nonlinear Anal. TMA, 20, 115-178 (1993) · Zbl 0797.35048
[23] Grossi, M., On the number of single-peak solutions of the nonlinear Schrödinger equations, Ann. Inst. Henri Poincare, Anal. Non Lineaire, 19, 261-280 (2002) · Zbl 1034.35127
[24] Guo, Y.; Peng, S.; Yan, S., Local uniqueness and periodicity induced by concentration, Proc. Lond. Math. Soc. (3), 114, 1005-1043 (2017) · Zbl 1378.35143
[25] Guo, Z., Ground states for Kirchhoff equations without compact condition, J. Differ. Equ., 259, 2884-2902 (2015) · Zbl 1319.35018
[26] He, Y., Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity, J. Differ. Equ., 261, 6178-6220 (2016) · Zbl 1364.35082
[27] He, Y.; Li, G., Standing waves for a class of Kirchhoff type problems in \(R^3\) involving critical Sobolev exponents, Calc. Var. Partial Differ. Equ., 54, 3067-3106 (2015) · Zbl 1328.35046
[28] He, Y.; Li, G.; Peng, S., Concentrating bound states for Kirchhoff type problems in \(R^3\) involving critical Sobolev exponents, Adv. Nonlinear Stud., 14, 483-510 (2014) · Zbl 1305.35033
[29] He, C.-J.; Xiang, C.-L., Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential, J. Math. Anal. Appl., 441, 211-234 (2016) · Zbl 1338.35178
[30] He, X.; Zou, W., Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(R^3\), J. Differ. Equ., 252, 1813-1834 (2012) · Zbl 1235.35093
[31] Hu, T.; Shuai, W., Multi-peak solutions to Kirchhoff equations in \(R^3\) with general nonlinearity, J. Differ. Equ., 265, 3587-3617 (2018) · Zbl 1398.35058
[32] Kirchhoff, G., Mechanik (1883), Teubner: Teubner Leipzig · JFM 08.0542.01
[33] Kwong, M. K., Uniqueness of positive solutions of \(\Delta u - u + u^p = 0\) in \(R^n\), Arch. Ration. Mech. Anal., 105, 3, 243-266 (1989) · Zbl 0676.35032
[34] Li, Y.; Li, F.; Shi, J., Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equ., 253, 2285-2294 (2012) · Zbl 1259.35078
[35] Li, G.; Ye, H., Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \(R^3\), J. Differ. Equ., 257, 566-600 (2014) · Zbl 1290.35051
[36] Lions, J. L., On some questions in boundary value problems of mathematical physics, (Contemporary Development in Continuum Mechanics and Partial Differential Equations. Contemporary Development in Continuum Mechanics and Partial Differential Equations, North-Holland Math. Stud., vol. 30 (1978), North-Holland: North-Holland Amsterdam, New York), 284-346 · Zbl 0404.35002
[37] Oh, Y. G., Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class \((V)_a\), Commun. Partial Differ. Equ., 13, 1499-1519 (1988) · Zbl 0702.35228
[38] Oh, Y. G., On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys., 131, 223-253 (1990) · Zbl 0753.35097
[39] Perera, K.; Zhang, Z., Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221, 246-255 (2006) · Zbl 1357.35131
[40] Pohozaev, S. I., A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.), 96, 138, 152-166 (1975), 168 (in Russian)
[41] Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 270-291 (1992) · Zbl 0763.35087
[42] Selvitella, A., Nondegeneracy of the ground state for quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 53, 349-364 (2015) · Zbl 1319.35244
[43] Wang, J.; Tian, L.; Xu, J.; Zhang, F., Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253, 2314-2351 (2012) · Zbl 1402.35119
[44] Xiang, C.-L., Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations, Discrete Contin. Dyn. Syst., 36, 10, 5789-5800 (2016) · Zbl 1351.35059
[45] Ye, H., Positive high energy solution for Kirchhoff equation in \(R^3\) with superlinear nonlinearities via Nehari-Pohoz̆aev manifold, Discrete Contin. Dyn. Syst., 35, 3857-3877 (2015) · Zbl 1311.35113
[46] Ziemer, W. P., Weakly Differentiable Functions, Graduate Texts in Mathematics, vol. 120 (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.