×

Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \(\mathbb{R}^3\). (English) Zbl 1290.35051

Summary: In this paper, we study the following nonlinear problem of Kirchhoff type with pure power nonlinearities: \[ \begin{cases} -\left(a + b \int\limits_{\mathbb{R}^3} | D u |^2\right) \operatorname{\Delta} u + V(x) u = | u |^{p - 1} u, & x \in \mathbb{R}^3, \\ u \in H^1\left(\mathbb{R}^3\right), \;u > 0, & x \in \mathbb{R}^3, \end{cases} \quad \eqno {(0.1)} \] where \(a, b > 0\) are constants, \(2 < p < 5\) and \(V : \mathbb{R}^3 \to \mathbb{R}\). Under certain assumptions on \(V\), we prove that (0.1) has a positive ground state solution by using a monotonicity trick and a new version of global compactness lemma.
Our main results especially solve problem (0.1) in the case where \(p \in(2, 3]\), which has been an open problem for Kirchhoff equations and can be viewed as a partial extension of a recent result of X. He and W. Zou [J. Differ. Equations 252, No. 2, 1813–1834 (2012; Zbl 1235.35093)] concerning the existence of positive solutions to the nonlinear Kirchhoff problem \[ \begin{cases} -\left(\varepsilon^2 a + \varepsilon b \int\limits_{\mathbb{R}^3} | D u |^2\right) \operatorname{\Delta} u + V(x) u = f(u), & x \in \mathbb{R}^3, \\ u \in H^1(\mathbb{R}^3), u > 0, & x \in \mathbb{R}^3, \end{cases} \] where \(\varepsilon > 0\) is a parameter, \(V(x\)) is a positive continuous potential and \(f(u) \sim | u |^{p - 1} u\) with \(3 < p < 5\) and satisfies the Ambrosetti-Rabinowitz type condition. Our main results extend also the arguments used in [A. Azzollini and A. Pomponio, J. Math. Anal. Appl. 345, No. 1, 90–108 (2008; Zbl 1147.35091); L. Zhao and F. Zhao, J. Math. Anal. Appl. 346, No. 1, 155–169 (2008; Zbl 1159.35017)], which deal with Schrödinger-Poisson system with pure power nonlinearities, to the Kirchhoff type problem.

MSC:

35J20 Variational methods for second-order elliptic equations
35B09 Positive solutions to PDEs

References:

[1] Alves, C. O.; Crrea, F. J.S. A., On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal., 8, 43-56 (2001) · Zbl 1011.35058
[2] Alves, C. O.; Figueiredo, G. M., On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in \(R^N\), J. Differential Equations, 246, 1288-1311 (2009) · Zbl 1160.35024
[3] Ambrosetti, A.; Ruiz, D., Multiple bound states for the Schrödinger-Poisson problem, Commum. Contemp. Math., 10, 3, 391-404 (2008) · Zbl 1188.35171
[4] D’Ancona, P.; Spagnolo, S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108, 2, 247-262 (1992) · Zbl 0785.35067
[5] D’Aprile, T.; Mugnai, D., Non-existence results for the coupled Klein-Cordon-Maxwell equations, Adv. Nonlinear Stud., 4, 307-322 (2004) · Zbl 1142.35406
[6] Arosio, A.; Panizzi, S., On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348, 1, 305-330 (1996) · Zbl 0858.35083
[7] Azzollini, A.; Pomponio, A., Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345, 90-108 (2008) · Zbl 1147.35091
[8] Benedetto, E. D., \(C^{1 + \alpha}\) local regularity of weak solutions of degenerate results for elliptic equations, Nonlinear Anal., 7, 827-850 (1983) · Zbl 0539.35027
[9] Bernstein, S., Sur une classe d’équations fonctionelles aux dérivées partielles, Bull. Acad. Sci. URSS. Sér., 4, 17-26 (1940) · JFM 66.0471.01
[10] Berestycki, H.; Lions, P. L., Nonlinear scalar field equations I, Arch. Ration. Mech. Anal., 82, 313-346 (1983) · Zbl 0533.35029
[11] Coclite, G. M., A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7, 417-423 (2003) · Zbl 1085.81510
[12] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Soriano, J. A., Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations, 6, 6, 701-730 (2001) · Zbl 1007.35049
[13] Furtado, M. F.; Maia, L. A.; Medeiros, E. S., Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential, Adv. Nonlinear Stud., 8, 353-373 (2008) · Zbl 1168.35433
[14] He, X. M.; Zou, W. M., Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(R^3\), J. Differential Equations, 252, 1813-1834 (2012) · Zbl 1235.35093
[15] Jeanjean, L., On the existence of bounded Palais-Smale sequences and application to a Landsman-Lazer-type problem set on \(R^N\), Proc. Roy. Soc. Edinburgh Sect. A, 129, 787-809 (1999) · Zbl 0935.35044
[16] Jin, J. H.; Wu, X., Infinitely many radial solutions for Kirchhoff-type problems in \(R^N\), J. Math. Anal. Appl., 369, 564-574 (2010) · Zbl 1196.35221
[17] Kirchhoff, G., Mechanik (1883), Teubner: Teubner Leipzig · JFM 08.0542.01
[18] Li, G. B., Some properties of weak solutions of nonlinear scalar fields equation, Ann. Acad. Sci. Fenn. Math., 14, 27-36 (1989)
[19] Li, Y., Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 253, 2285-2294 (2012) · Zbl 1259.35078
[20] Lions, J. L., On some questions in boundary value problems of mathematical physics, (Contemporary Development in Continuum Mechanics and Partial Differential Equations. Contemporary Development in Continuum Mechanics and Partial Differential Equations, North-Holland Math. Stud., vol. 30 (1978), North-Holland: North-Holland Amsterdam, New York), 284-346 · Zbl 0404.35002
[21] Lions, P. L., The concentration-compactness principle in the calculus of variations. The locally compact case, I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 109-145 (1984) · Zbl 0541.49009
[22] Liu, W.; He, X. M., Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput., 39, 473-487 (2012) · Zbl 1295.35226
[23] Moser, J., A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13, 457-468 (1960) · Zbl 0111.09301
[24] Pohoz̆aev, S. I., A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.), 96, 138, 152-166 (1975), 168 (in Russian)
[25] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Different Equations, CBMS Reg. Conf. Ser. Math., vol. 65 (1986), published for the Conference Board of Mathematical Science, Washington, DC · Zbl 0609.58002
[26] Struwe, M., On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv., 60, 558-581 (1985) · Zbl 0595.58013
[27] Ruiz, D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237, 655-674 (2006) · Zbl 1136.35037
[28] Tolksdorf, P., Regularity for some general class of quasilinear elliptic equations, J. Differential Equations, 51, 126-150 (1984) · Zbl 0488.35017
[29] Trudinger, N. S., On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., XX, 721-747 (1967) · Zbl 0153.42703
[30] Wang, J., Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations, 253, 2314-2351 (2012) · Zbl 1402.35119
[31] Willem, M., Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24 (1996), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0856.49001
[32] Wu, X., Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \(R^N\), Nonlinear Anal. Real World Appl., 12, 1278-1287 (2011) · Zbl 1208.35034
[33] Zhao, L.; Zhao, F. K., On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346, 155-169 (2008) · Zbl 1159.35017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.