×

Proof of the weak gravity conjecture from black hole entropy. (English) Zbl 1402.83054

Summary: We prove that higher-dimension operators contribute positively to the entropy of a thermodynamically stable black hole at fixed mass and charge. Our results apply whenever the dominant corrections originate at tree level from quantum field theoretic dynamics. More generally, positivity of the entropy shift is equivalent to a certain inequality relating the free energies of black holes. These entropy inequalities mandate new positivity bounds on the coefficients of higher-dimension operators. One of these conditions implies that the charge-to-mass ratio of an extremal black hole asymptotes to unity from above for increasing mass. Consequently, large extremal black holes are unstable to decay to smaller extremal black holes and the weak gravity conjecture is automatically satisfied. Our findings generalize to arbitrary spacetime dimension and to the case of multiple gauge fields. The assumptions of this proof are valid across a range of scenarios, including string theory constructions with a dilaton stabilized below the string scale.

MSC:

83C57 Black holes
94A17 Measures of information, entropy
81T10 Model quantum field theories
83E30 String and superstring theories in gravitational theory

References:

[1] S. Deser and P. van Nieuwenhuizen, One Loop Divergences of Quantized Einstein-Maxwell Fields, Phys. Rev.D 10 (1974) 401 [INSPIRE].
[2] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[3] Dong, X., Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP, 01, 044, (2014) · Zbl 1333.83156 · doi:10.1007/JHEP01(2014)044
[4] J.D. Bekenstein, Black holes and entropy, Phys. Rev.D 7 (1973) 2333 [INSPIRE]. · Zbl 1369.83037
[5] S.W. Hawking, Black Holes and Thermodynamics, Phys. Rev.D 13 (1976) 191 [INSPIRE].
[6] P.C.W. Davies, Thermodynamics of Black Holes, Proc. Roy. Soc. Lond.A 353 (1977) 499 [INSPIRE].
[7] Arkani-Hamed, N.; Motl, L.; Nicolis, A.; Vafa, C., The string landscape, black holes and gravity as the weakest force, JHEP, 06, 060, (2007) · doi:10.1088/1126-6708/2007/06/060
[8] C. Cheung and G.N. Remmen, Naturalness and the Weak Gravity Conjecture, Phys. Rev. Lett.113 (2014) 051601 [arXiv:1402.2287] [INSPIRE]. · Zbl 1382.83007
[9] C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE]. · Zbl 1117.81117
[10] Ooguri, H.; Vafa, C., On the Geometry of the String Landscape and the Swampland, Nucl. Phys., B 766, 21, (2007) · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[11] Adams, A.; Arkani-Hamed, N.; Dubovsky, S.; Nicolis, A.; Rattazzi, R., Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014, (2006) · doi:10.1088/1126-6708/2006/10/014
[12] Cheung, C.; Remmen, GN, Infrared Consistency and the Weak Gravity Conjecture, JHEP, 12, 087, (2014) · doi:10.1007/JHEP12(2014)087
[13] B. Bellazzini, C. Cheung and G.N. Remmen, Quantum Gravity Constraints from Unitarity and Analyticity, Phys. Rev.D 93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].
[14] Cheung, C.; Remmen, GN, Positive Signs in Massive Gravity, JHEP, 04, 002, (2016) · Zbl 1388.83576
[15] C. Cheung and G.N. Remmen, Positivity of Curvature-Squared Corrections in Gravity, Phys. Rev. Lett.118 (2017) 051601 [arXiv:1608.02942] [INSPIRE]. · Zbl 1382.83007
[16] G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev.D 15 (1977) 2752 [INSPIRE].
[17] H.W. Braden, J.D. Brown, B.F. Whiting and J.W. York Jr., Charged black hole in a grand canonical ensemble, Phys. Rev.D 42 (1990) 3376 [INSPIRE].
[18] J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev.D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
[19] G.W. Gibbons, S.W. Hawking and M.J. Perry, Path Integrals and the Indefiniteness of the Gravitational Action, Nucl. Phys.B 138 (1978) 141 [INSPIRE].
[20] G.W. Gibbons and M.J. Perry, Quantizing Gravitational Instantons, Nucl. Phys.B 146 (1978) 90 [INSPIRE].
[21] D.J. Gross, M.J. Perry and L.G. Yaffe, Instability of Flat Space at Finite Temperature, Phys. Rev.D 25 (1982) 330 [INSPIRE]. · Zbl 1267.83039
[22] J.W. York Jr., Black hole thermodynamics and the Euclidean Einstein action, Phys. Rev.D 33 (1986) 2092 [INSPIRE]. · Zbl 1058.83514
[23] Hawking, SW; Page, DN, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys., 87, 577, (1983) · doi:10.1007/BF01208266
[24] T. Prestidge, Dynamic and thermodynamic stability and negative modes in Schwarzschild-anti-de Sitter, Phys. Rev.D 61 (2000) 084002 [hep-th/9907163] [INSPIRE].
[25] H.S. Reall, Classical and thermodynamic stability of black branes, Phys. Rev.D 64 (2001) 044005 [hep-th/0104071] [INSPIRE].
[26] R. Monteiro and J.E. Santos, Negative modes and the thermodynamics of Reissner-Nordström black holes, Phys. Rev.D 79 (2009) 064006 [arXiv:0812.1767] [INSPIRE].
[27] A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity, JHEP05 (2010) 095 [Erratum ibid.11 (2011) 128] [arXiv:0912.4258] [INSPIRE]. · Zbl 1287.83013
[28] Komargodski, Z.; Schwimmer, A., On Renormalization Group Flows in Four Dimensions, JHEP, 12, 099, (2011) · Zbl 1306.81140 · doi:10.1007/JHEP12(2011)099
[29] Solodukhin, SN, Entanglement entropy of black holes, Living Rev. Rel., 14, 8, (2011) · Zbl 1320.83015 · doi:10.12942/lrr-2011-8
[30] D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, Rev. Mod. Phys.88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].
[31] S.N. Solodukhin, The conical singularity and quantum corrections to entropy of black hole, Phys. Rev.D 51 (1995) 609 [hep-th/9407001] [INSPIRE].
[32] S.N. Solodukhin, On ‘Nongeometric’ contribution to the entropy of black hole due to quantum corrections, Phys. Rev.D 51 (1995) 618 [hep-th/9408068] [INSPIRE].
[33] D.V. Fursaev, Temperature and entropy of a quantum black hole and conformal anomaly, Phys. Rev.D 51 (1995) 5352 [hep-th/9412161] [INSPIRE].
[34] S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav.17 (2000) 4175 [gr-qc/0005017] [INSPIRE]. · Zbl 0970.83026
[35] S.N. Solodukhin, One loop renormalization of black hole entropy due to nonminimally coupled matter, Phys. Rev.D 52 (1995) 7046 [hep-th/9504022] [INSPIRE].
[36] D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys.B 453 (1995) 281 [hep-th/9503016] [INSPIRE]. · Zbl 0925.83036
[37] S.N. Solodukhin, Newton constant, contact terms and entropy, Phys. Rev.D 91 (2015) 084028 [arXiv:1502.03758] [INSPIRE].
[38] W. Donnelly and A.C. Wall, Do gauge fields really contribute negatively to black hole entropy?, Phys. Rev.D 86 (2012) 064042 [arXiv:1206.5831] [INSPIRE].
[39] Donnelly, W.; Wall, AC, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett., 114, 111603, (2015) · doi:10.1103/PhysRevLett.114.111603
[40] L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev.D 50 (1994) 2700 [hep-th/9401070] [INSPIRE]. · Zbl 0990.83562
[41] J.-G. Demers, R. Lafrance and R.C. Myers, Black hole entropy without brick walls, Phys. Rev.D 52 (1995) 2245 [gr-qc/9503003] [INSPIRE].
[42] Kats, Y.; Motl, L.; Padi, M., Higher-order corrections to mass-charge relation of extremal black holes, JHEP, 12, 068, (2007) · Zbl 1246.83122 · doi:10.1088/1126-6708/2007/12/068
[43] M. Campanelli, C.O. Lousto and J. Audretsch, A perturbative method to solve fourth order gravity field equations, Phys. Rev.D 49 (1994) 5188 [gr-qc/9401013] [INSPIRE].
[44] G. Goon, Heavy Fields and Gravity, JHEP01 (2017) 045 [Erratum ibid.03 (2017) 161] [arXiv:1611.02705] [INSPIRE]. · Zbl 1373.83051
[45] T. Clunan, S.F. Ross and D.J. Smith, On Gauss-Bonnet black hole entropy, Class. Quant. Grav.21 (2004) 3447 [gr-qc/0402044] [INSPIRE]. · Zbl 1061.83527
[46] D.J. Gross and J.H. Sloan, The Quartic Effective Action for the Heterotic String, Nucl. Phys.B 291 (1987) 41 [INSPIRE].
[47] L. Susskind, Trouble for remnants, hep-th/9501106 [INSPIRE].
[48] S.B. Giddings, Black holes and massive remnants, Phys. Rev.D 46 (1992) 1347 [hep-th/9203059] [INSPIRE].
[49] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc.C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
[50] Bousso, R., The holographic principle, Rev. Mod. Phys., 74, 825, (2002) · Zbl 1205.83025 · doi:10.1103/RevModPhys.74.825
[51] Banks, T.; Johnson, M.; Shomer, A., A Note on Gauge Theories Coupled to Gravity, JHEP, 09, 049, (2006) · doi:10.1088/1126-6708/2006/09/049
[52] G. Shiu, P. Soler and W. Cottrell, Weak Gravity Conjecture and Extremal Black Hole, arXiv:1611.06270 [INSPIRE].
[53] Horowitz, GT; Santos, JE; Way, B., Evidence for an Electrifying Violation of Cosmic Censorship, Class. Quant. Grav., 33, 195007, (2016) · Zbl 1349.83053 · doi:10.1088/0264-9381/33/19/195007
[54] Z. Fisher and C.J. Mogni, A Semiclassical, Entropic Proof of a Weak Gravity Conjecture, arXiv:1706.08257 [INSPIRE].
[55] S. Hod, A proof of the weak gravity conjecture, Int. J. Mod. Phys.D 26 (2017) 1742004 [arXiv:1705.06287] [INSPIRE].
[56] Bellazzini, B., Softness and amplitudes’ positivity for spinning particles, JHEP, 02, 034, (2017) · Zbl 1377.81219 · doi:10.1007/JHEP02(2017)034
[57] Rham, C.; Melville, S.; Tolley, AJ; Zhou, S-Y, UV complete me: Positivity Bounds for Particles with Spin, JHEP, 03, 011, (2018) · Zbl 1388.81262 · doi:10.1007/JHEP03(2018)011
[58] Bellazzini, B.; Riva, F.; Serra, J.; Sgarlata, F., Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett., 120, 161101, (2018) · doi:10.1103/PhysRevLett.120.161101
[59] G. Dvali, A. Franca and C. Gomez, Road Signs for UV-Completion, arXiv:1204.6388 [INSPIRE].
[60] A. Jenkins and D. O’Connell, The story of O: Positivity constraints in effective field theories, hep-th/0609159 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.