×

Performance portability of lattice Boltzmann methods for two-phase flows with phase change. (English) Zbl 1506.76134

Summary: Numerical codes using the lattice Boltzmann methods (LBM) for simulating one- or two-phase flows are widely compiled and run on graphical process units. However, those computational units necessitate to re-write the program by using a low-level language which is suited to those architectures (e.g. CUDA for GPU NVIDIA\(\circledR\) or OpenCL). In this paper we focus our effort on the performance portability of LBM i.e. the possibility of writing LB algorithms with a high-level of abstraction while remaining efficient on a wide range of architectures such as multicores x86, GPU NVIDIA\(\circledR\), ARM, and so on. For such a purpose, implementation of LBM is carried out by developing a unique code, LBM_saclay written in the C++ language, coupled with the library for performance portability in the context of High Performance Computing. In this paper, the LBM is used to simulate a phase-field model for two-phase flow problems with phase change. The mathematical model is composed of the incompressible Navier-Stokes equations coupled with the conservative Allen-Cahn model. Initially developed in the literature for immiscible binary fluids, the model is extended here to simulate phase change occurring at the interface between liquid and gas. For that purpose, a heat equation is added with a source term involving the time derivative of the phase field. In the phase-field equation a source term is added to approximate the mass production rate at the interface. Several validations are carried out to check step-by-step the implementation of the full model. Finally, computational times are compared on CPU and GPU platforms for the physical problem of film boiling.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
65Y10 Numerical algorithms for specific classes of architectures
76Txx Multiphase and multicomponent flows

Software:

Sailfish; GitHub; CUDA; Kokkos

References:

[1] Krueger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E., The Lattice Boltzmann Method: Principles and Practice, Graduate Texts in Physics (2016), Springer
[2] Guo, Z.; Shu, C., Lattice Boltzmann Method and its Applications in Engineering (2013), WORLD SCIENTIFIC · Zbl 1278.76001
[3] Li, W.; Wei, X.; Kaufman, A., Implementing lattice Boltzmann computation on graphics hardware, Vis. Comput., 19, 7, 444-456 (2003)
[4] Tölke, J., Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA, Comput. Vis. Sci., 13, 1, 29 (2008)
[5] Kuznik, F.; Obrecht, C.; Rusaouen, G.; Roux, J.-J., LBM based flow simulation using GPU computing processor, Comput. Math. Appl., 59, 7, 2380-2392 (2010) · Zbl 1193.76112
[6] Zhou, H.; Mo, G.; Wu, F.; Zhao, J.; Rui, M.; Cen, K., GPU implementation of lattice Boltzmann method for flows with curved boundaries, Comput. Methods Appl. Mech. Engrg., 225-228, 65-73 (2012) · Zbl 1253.76004
[7] Obrecht, C.; Kuznik, F.; Tourancheau, B.; Roux, J.-J., Multi-GPU implementation of the lattice Boltzmann method, Comput. Math. Appl., 65, 2, 252-261 (2013), Special Issue on Mesoscopic Methods in Engineering and Science (ICMMES-2010, Edmonton, Canada) · Zbl 1268.76048
[8] Januszewski, M.; Kostur, M., Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method, Comput. Phys. Comm., 185, 9, 2350-2368 (2014) · Zbl 1344.76004
[9] Edwards, H. C.; Trott, C. R.; Sunderland, D., Kokkos: Enabling manycore performance portability through polymorphic memory access patterns, J. Parallel Distrib. Comput., 74, 12, 3202-3216 (2014)
[10] Eichstädt, J.; Green, M.; Turner, M.; Peiró, J.; Moxey, D., Accelerating high-order mesh optimisation with an architecture-independent programming model, Comput. Phys. Comm., 229, 36-53 (2018)
[11] Huang, H.; Sukop, M.; Lu, X.-Y., Multiphase Lattice Boltzmann Methods. Theory and Application (2015), Wiley & Sons
[12] Li, Q.; Luo, K.; Kang, Q.; He, Y.; Chen, Q.; Liu, Q., Lattice Boltzmann methods for multiphase flow and phase-change heat transfer, Prog. Energy Combust. Sci., 52, 62-105 (2016)
[13] Gunstensen, A. K.; Rothman, D. H.; Zaleski, S.; Zanetti, G., Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, 43, 4320-4327 (1991)
[14] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 1815-1819 (1993)
[15] Shan, X.; Chen, H., Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E, 49, 2941-2948 (1994)
[16] Swift, M. R.; Orlandini, E.; Osborn, W. R.; Yeomans, J. M., Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys. Rev. E, 54, 5041-5052 (1996)
[17] Jacqmin, D., CaLculation of two-phase navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155, 96-127 (1999) · Zbl 0966.76060
[18] Yuan, P.; Schaefer, L., Equations of state in a lattice Boltzmann model, Phys. Fluids, 18, 042101 (2006) · Zbl 1185.76872
[19] Li, X.; Cheng, P., Lattice Boltzmann simulations for transition from dropwise to filmwise condensation on hydrophobic surfaces with hydrophilic spots, Int. J. Heat Mass Transfer, 110, 710-722 (2017)
[20] Li, M.; Huber, C.; Mu, Y.; Tao, W., Lattice Boltzmann simulation of condensation in the presence of noncondensable gas, Int. J. Heat Mass Transfer, 109, 1004-1013 (2017)
[21] Leclaire, S.; Reggio, M.; Trépanier, J.-Y., Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model, Appl. Math. Model., 36, 5, 2237-2252 (2012) · Zbl 1243.76079
[22] Leclaire, S.; Pellerin, N.; Reggio, M.; Trépanier, J.-Y., Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice Boltzmann models, Int. J. Multiph. Flow., 57, 159-168 (2013)
[23] Anderson, D.; McFadden, G.; Wheeler, A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) · Zbl 1398.76051
[24] Cahn, J.; Hilliard, J., Free energy of a nonuniform system. i. interfacial free energy, J. Chem. Phys., 28, 2, 258-267 (1958) · Zbl 1431.35066
[25] Jasnow, D.; Viñals, J., Coarse-grained description of thermo-capillary flow, Phys. Fluids, 8, 3, 660-669 (1996) · Zbl 1025.76521
[26] Kendon, V.; Cates, M.; Pagonabarraga, I.; Desplat, J.-C.; Bladon, P., Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study, J. Fluid Mech., 440, 147-203 (2001) · Zbl 1049.76052
[27] Zheng, H.; Shu, C.; Chew, Y., A lattice Boltzmann model for multiphase flows with large density ratio, J. Comput. Phys., 218, 353-371 (2006) · Zbl 1158.76419
[28] Lee, T.; Liu, L., Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, J. Comput. Phys., 229, 8045-8063 (2010) · Zbl 1426.76603
[29] Zu, Y. Q.; He, S., Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts, Phys. Rev. E, 87, 043301 (2013)
[30] Sun, Y.; Beckermann, C., Sharp interface tracking using the phase-field equation, J. Comput. Phys., 220, 2, 626-653 (2007) · Zbl 1228.76110
[31] Chiu, P.-H.; Lin, Y.-T., A conservative phase field method for solving incompressible two-phase flows, J. Comput. Phys., 230, 1, 185-204 (2011) · Zbl 1427.76201
[32] Geier, M.; Fakhari, A.; Lee, T., Conservative phase-field lattice Boltzmann model for interface tracking equation, Phys. Rev. E, 91, 063309 (2015)
[33] Fakhari, A.; Bolster, D.; Luo, L.-S., A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades, J. Comput. Phys., 341, 22-43 (2017) · Zbl 1376.76047
[34] Mitchell, T.; Leonardi, C.; Fakhari, A., Development of a three-dimensional phase-field lattice Boltzmann method for the study of immiscible fluids at high density ratios, Int. J. Multiph. Flow., 107, 1-15 (2018)
[35] Lee, D.; Kim, J., Comparison study of the conservative allen-cahn and the cahn-hilliard equations, Math. Comput. Simulation, 119, 35-56 (2016) · Zbl 1540.82010
[36] Wang, H. L.; Chai, Z. H.; Shi, B. C.; Liang, H., Comparative study of the lattice Boltzmann models for allen-cahn and cahn-hilliard equations, Phys. Rev. E, 94, 033304 (2016)
[37] Dong, Z.; Li, W.; Song, Y., Lattice Boltzmann simulation of growth and deformation for a rising vapor bubble through superheated liquid, Numer. Heat Transf. A: Appl., 55, 4, 381-400 (2009)
[38] Safari, H.; Rahimian, M. H.; Krafczyk, M., Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow, Phys. Rev. E, 88, 013304 (2013)
[39] Kharangate, C. R.; Mudawar, I., Review of computational studies on boiling and condensation, Int. J. Heat Mass Transfer, 108, 1164-1196 (2017)
[40] Folch, R.; Casademunt, J.; Hernández-Machado, A.; Ramírez-Piscina, L., Phase-field model for hele-shaw flows with arbitrary viscosity contrast. i. theoretical approach, Phys. Rev. E, 60, 1724-1733 (1999)
[41] Jamet, D.; Misbah, C., Thermodynamically consistent picture of the phase-field model of vesicles: Elimination of the surface tension, Phys. Rev. E, 78, 041903 (2008)
[42] Kobayashi, R., Modeling and numerical simulations of dendritic crystal growth, Physica D, 63, 3, 410-423 (1993) · Zbl 0797.35175
[43] Amaya-Bower, L.; Lee, T., Single bubble rising dynamics for moderate reynolds number using lattice Boltzmann method, Comput. & Fluids, 39, 7, 1191-1207 (2010) · Zbl 1242.76264
[44] Kim, J., A continuous surface tension force formulation for diffuse-interface models, J. Comput. Phys., 204, 2, 784-804 (2005) · Zbl 1329.76103
[45] Delhaye, J., Jump conditions and entropy sources in two-phase systems. local instant formulation, Int. J. Multiph. Flow., 1, 3, 395-409 (1974) · Zbl 0358.76066
[46] Juric, D.; Tryggvason, G., Computations of boiling flows, Int. J. Multiph. Flow., 24, 3, 387-410 (1998) · Zbl 1121.76455
[47] Safari, H.; Rahimian, M. H.; Krafczyk, M., Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method, Phys. Rev. E, 90, 033305 (2014)
[48] Begmohammadi, A.; Farhadzadeh, M.; Rahimian, M. H., Simulation of pool boiling and periodic bubble release at high density ratio using lattice Boltzmann method, Int. Commun. Heat Mass Transfer, 61, 78-87 (2015)
[49] Karma, A.; Rappel, W.-J., Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57, 4, 4323-4349 (1998) · Zbl 1086.82558
[50] Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv. Water Resour., 28, 11, 1171-1195 (2005)
[51] D’Humières, D., Generalized lattice-Boltzmann equations, (Rarefied Gas Dynamics: Theory and Simulations (1992)), 450-458, Prog. Astronaut. Aeronaut. 59
[52] d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S., Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 360, 437-451 (2002) · Zbl 1001.76081
[53] He, X.; Chen, S.; Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146, 1, 282-300 (1998) · Zbl 0919.76068
[54] Inamuro, T.; Ogata, T.; Tajima, S.; Konishi, N., A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys., 198, 2, 628-644 (2004) · Zbl 1116.76415
[55] Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2, 1, 12-26 (1967) · Zbl 0149.44802
[56] He, X.; Luo, L.-S., Lattice Boltzmann model for the incompressible navier-Stokes equation, J. Stat. Phys., 88, 3/4, 927-944 (1997) · Zbl 0939.82042
[57] Mohammadi-Shad, M.; Lee, T., Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver, Phys. Rev. E, 96, 013306 (2017)
[58] Ginzburg, I., Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations, Adv. Water Resour., 28, 11, 1196-1216 (2005)
[59] Lee, T.; Fischer, P., Eliminating parasitic currents in the lattice Boltzmann equation method for non ideal gases, Phys. Rev. E, 74, 046709 (2006)
[60] Lee, T., Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids, Comput. Math. Appl., 58, 987-994 (2009) · Zbl 1189.76414
[61] Lee, T.; Lin, C.-L., A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys., 206, 1, 16-47 (2005) · Zbl 1087.76089
[62] Fakhari, A.; Mitchell, T.; Leonardi, C.; Bolster, D., Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios, Phys. Rev. E, 96, 053301 (2017)
[63] Compatibilities of kokkos library (2020), https://github.com/kokkos/kokkos/wiki/Compiling (Web link accessible on 12 May 2020)
[64] Calore, E.; Gabbana, A.; Schifano, S. F.; Tripiccione, R., Early experience on using knights landing processors for lattice Boltzmann applications, (Wyrzykowski, R.; Dongarra, J.; Deelman, E.; Karczewski, K., Parallel Processing and Applied Mathematics (2018), Springer International Publishing: Springer International Publishing Cham), 519-530
[65] T. Z.alesak, S., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 3, 335-362 (1979) · Zbl 0416.76002
[66] Hahn, D.; Özisik, M., Heat Conduction, 752 (2012), Wiley & Sons
[67] Esmaeeli, A.; Tryggvason, G., A front tracking method for computations of boiling in complex geometries, Int. J. Multiph. Flow., 30, 7, 1037-1050 (2004), A Collection of Papers in Honor of Professor G. Yadigaroglu on the Occasion of his 65th Birthday · Zbl 1201.76275
[68] Pandey, V.; Biswas, G.; Dalal, A., Effect of superheat and electric field on saturated film boiling, Phys. Fluids, 28, 5, 052102 (2016)
[69] Begmohammadi, A.; Rahimian, M.; Farhadzadeh, M.; Hatani, M. A., Numerical simulation of single- and multi-mode film boiling using lattice Boltzmann method, Comput. Math. Appl., 71, 9, 1861-1874 (2016) · Zbl 1443.65259
[70] Hu, A.; Liu, D., 2d simulation of boiling heat transfer on the wall with an improved hybrid lattice Boltzmann model, Appl. Therm. Eng., 159, 113788 (2019)
[71] Singh, N. K.; Premachandran, B., Numerical investigation of film boiling on a horizontal wavy wall, Int. J. Heat Mass Transfer, 150, 119371 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.