×

A lattice Boltzmann method for incompressible two-phase flows with large density differences. (English) Zbl 1116.76415

Summary: A lattice Boltzmann method for two-phase immiscible fluids with large density differences is proposed. The difficulty in the treatment of large density difference is resolved by using the projection method. The method can be applied to simulate two-phase fluid flows with the density ratio up to 1000. To show the validity of the method, we apply the method to the simulations of capillary waves, binary droplet collisions, and bubble flows. In capillary waves, the angular frequencies of the oscillation of an ellipsoidal droplet are obtained in good agreement with theoretical ones. In the simulations of binary droplet collisions, coalescence collision and two different types of separating collisions, namely reflexive and stretching separations, can be simulated, and the boundaries of the three types of collisions are in good agreement with an available theoretical prediction. In the bubble flows, the effect of mobility on the coalescence of two rising bubbles is investigated. The behavior of many bubbles in a square duct is also simulated.

MSC:

76M28 Particle methods and lattice-gas methods
76T10 Liquid-gas two-phase flows, bubbly flows
Full Text: DOI

References:

[1] Gunstensen, A. K.; Rothman, D. H.; Zaleski, S.; Zanetti, G., Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, 43, 4320-4327 (1991)
[2] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 1815-1819 (1993)
[3] Swift, M. R.; Osborn, W. R.; Yeomans, J. M., Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75, 830-833 (1995)
[4] He, X.; Chen, S.; Zhang, R., A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys., 152, 642-663 (1999) · Zbl 0954.76076
[5] T. Inamuro, T. Miyahara, F. Ogino, Lattice Boltzmann simulations of drop deformation and breakup in simple shear flow, in: N. Satofuka (Ed.), Computational Fluid Dynamics 2000, Springer-Verlag, Berlin, 2001, pp. 499-504; T. Inamuro, T. Miyahara, F. Ogino, Lattice Boltzmann simulations of drop deformation and breakup in simple shear flow, in: N. Satofuka (Ed.), Computational Fluid Dynamics 2000, Springer-Verlag, Berlin, 2001, pp. 499-504
[6] Inamuro, T.; Tomita, R.; Ogino, F., Lattice Boltzmann simulations of drop deformation and breakup in shear flows, Int. J. Mod. Phys. B, 17, 21-26 (2002)
[7] Ginzburg, I.; Steiner, K., Lattice Boltzmann model for free-surface flow and its application to filling process in casting, J. Comput. Phys., 185, 61-99 (2003) · Zbl 1062.76554
[8] Tölke, J.; Krafczyk, M.; Schulz, M.; Rank, E., Lattice Boltzmann simulations of binary fluid flow through porous media, Philos. Trans. R. Soc. Lond. A, 360, 535-545 (2002) · Zbl 1037.76047
[9] Sankaranarayanan, K.; Sundaresan, S., Lift force in bubbly suspensions, Chem. Eng. Sci., 57, 3521-3542 (2002)
[10] Sankaranarayanan, K.; Shan, X.; Kevrekidis, I. G.; Sundaresan, S., Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method, J. Fluid Mech., 452, 61-96 (2002) · Zbl 1059.76070
[11] Sankaranarayanan, K.; Kevrekidis, I. G.; Sundaresan, S.; Lu, J.; Tryggvason, G., A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations, Int. J. Multiphase Flow, 29, 109-116 (2003) · Zbl 1136.76630
[12] Luo, L. S., Unified theory of lattice Boltzmann models for nonideal gases, Phys. Rev. Lett., 81, 1618-1621 (1998)
[13] Luo, L. S., Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases, Phys. Rev. E, 62, 4982-4996 (2000)
[14] Luo, L. S.; Girimaji, S. S., Lattice Boltzmann model for binary mixtures, Phys. Rev. E, 66, 035301 (2002)
[15] Luo, L. S.; Girimaji, S. S., Theory of the lattice Boltzmann method: two-fluid model for binary mixtures, Phys. Rev. E, 67, 036302 (2003)
[16] Rowlinson, J. S.; Widom, B., Molecular Theory of Capillarity (1989), Clarendon Press: Clarendon Press Oxford, pp. 50-68 (Chapter 3)
[17] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) · Zbl 1398.76051
[18] Nadiga, B. T.; Zaleski, S., Investigations of a two-phase fluid model, Eur. J. Mech. B, 15, 885-896 (1996) · Zbl 0886.76097
[19] Jacqmin, D., Calculation of two-phase Navier-Stokes using phase-field modeling, J. Comput. Phys., 155, 96-127 (1999) · Zbl 0966.76060
[20] Teng, S.; Chen, Y.; Ohashi, H., Lattice Boltzmann simulation of multiphase fluid flows through the total variation diminishing artificial compression scheme, Int. J. Heat Fluid Flow, 21, 112-121 (2000)
[21] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745-762 (1968) · Zbl 0198.50103
[22] Sone, Y., Kinetic Theory and Fluid Dynamics (2002), Birkhäuser: Birkhäuser Boston, pp. 315-326 (Appendix C) · Zbl 1021.76002
[23] Inamuro, T.; Yoshino, M.; Ogino, F., Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number, Phys. Fluids, 9, 3535-3542 (1997) · Zbl 1185.76869
[24] Sone, Y., Asymptotic theory of flow of rarefied gas over a smooth boundary II, (Dini, D., Rarefied Gas Dynamic, vol. 2 (1971), Editrice Tecnico Scientifica: Editrice Tecnico Scientifica Pisa), 737-749
[25] Sone, Y., Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers, (Gatignol, R.; Soubbaramayer, Advances in Kinetic Theory and Continuum Mechanics (1991), Springer: Springer Berlin), 19-31
[26] Inamuro, T.; Konishi, N.; Ogino, F., A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach, Comput. Phys. Commun., 129, 32-45 (2000) · Zbl 0983.76071
[27] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1987), Pergamon Press: Pergamon Press Oxford, pp. 244-247 (Chapter VII) · Zbl 0655.76001
[28] Ashgriz, N.; Poo, J. Y., Coalescence and separation in binary collisions of liquid drops, J. Fluid Mech., 221, 183-204 (1990)
[29] T. Inamuro, T. Ogata, F. Ogino, Numerical simulation of bubble flows by the lattice Boltzmann method, Future Generation Computer Systems (in press); T. Inamuro, T. Ogata, F. Ogino, Numerical simulation of bubble flows by the lattice Boltzmann method, Future Generation Computer Systems (in press) · Zbl 1113.76432
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.