×

Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method. (English) Zbl 1242.76264

Summary: Dynamics of a single rising gas bubble is studied using a lattice Boltzmann method (LBM) based on the Cahn-Hilliard diffuse interface approach. The bubble rises due to gravitational force. However, deformation and velocity of the bubble depend on the balance of other forces produced by surface tension, inertia, and viscosity. Depending on the primary forces acting on the system, bubble dynamics can be classified into different regimes. These regimes are achieved computationally by systematically changing the values of Morton number \((Mo)\) and Bond number \((Bo)\) within the following ranges (\(1\times 10^{-5}<Mo<3\times 10^{4}\)) and \((1<Bo<1\times 10^{3})\). Terminal shape and Reynolds number \((Re)\) are interactive quantities that depend on size of bubble, surface tension, viscosity, and density of surrounding fluid. Accurate simulation of terminal shape and \(Re\) for each regime could be satisfactorily predicted and simulated, since they are also functions of \(Mo\) and \(Bo\). Results are compared with previous experimental results.

MSC:

76M28 Particle methods and lattice-gas methods
76T10 Liquid-gas two-phase flows, bubbly flows
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Deckwer, W.-D., Bubble column reactors (1992), Wiley: Wiley Chichester
[2] Blanch, H. W.; Clark, D. S., Biochemical engineering (1996), Dekker: Dekker New York
[3] Moshtari, B.; Babakhani, E. G.; Moghaddas, J. S., Experimental study of gas hold-up and bubble behavior in gas liquid bubble column, Petrol Coal, 1, 27-32 (2009)
[4] Clift, R.; Grace, J. R.; Weber, M., Bubbles, drops, and particles (1978), Academic Press: Academic Press New York
[5] Bhaga, D.; Weber, M. E., Bubbles in viscous liquids: shapes, wakes and velocities, J Fluid Mech, 105, 61-85 (1981)
[6] Kurtoglu, I. O.; Lin, C.-L., Lattice Boltzmann study of bubble dynamics, Numer Heat Transfer, Part B, 50, 333-351 (2006)
[7] Hadamard, J. S., Mouvement permanent lent d’une sphre liquide et visqueuse dans une liquide visqueuse, CR Acad Sci, 152, 1735-1738 (1911) · JFM 42.0813.01
[8] Rybczynski, W., On the translatory motion of a fluid sphere in a viscous medium, Bull Int Acad Pol Sci Lett, Sci Math Nat Ser A, 40-46 (1911)
[9] Mendelson, H. D., The prediction of bubble terminal velocities from wave theory, AIChE J, 13, 250-252 (1967)
[10] Davies, R. M.; Sir Taylor, G. I., The mechanics of large bubbles rising through extended liquids in tube, Proc R Soc Ser A, 200, 375-390 (1950)
[11] Prosperetti, A.; Tryggvason, G., Computational methods for multiphase flow (2007), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1166.76003
[12] Chen, L.; Garimella, S.; Reizes, J.; Leonard, E., The development of a bubble rising in a viscous liquid, J Comput Phys, 387, 61-96 (1999) · Zbl 0946.76055
[13] Tomiyama, A.; Celata, G. P.; Hosokawa, S.; Yoshida, S., Terminal velocity of single bubble in surface tension force dominant regime, Int J Multiphase Flow, 28, 1479-1519 (2002) · Zbl 1137.76757
[14] Van Sint Annaland, M.; Deen, N. G.; Kuipers, J. A.M., Numerical simulation of gas bubbles behavior using a three-dimensional volume of fluid method, Chem Eng Sci, 60, 2999-3011 (2005)
[15] Van Sint Annaland, M.; Dijkhuizen, W.; Deen, N. G.; Kuipers, J. A.M., Numerical simulation of behavior of gas bubbles using a 3D front-tracking method, AIChE J, 52, 99-110 (2006)
[16] Bonometti, T.; Magnaudet, J., Transition from spherical cap to toroidal bubbles, Phys Fluids, 33, 052102 (2006)
[17] Smolianski, A.; Haario, H.; Luuka, P., Numerical study of dynamics of single bubbles and bubble swarms, Appl Math Mod, 32, 641-659 (2008) · Zbl 1187.76655
[18] Hua, J.; Stene, J. F.; Lin, P., Numerical simulation of 3D bubble rising in viscous liquids using a front tracking method, J Comput Phys, 227, 3358-3382 (2008) · Zbl 1329.76262
[19] Sankaranarayanan, K.; Shan, X.; Kevrekidis, K.; Sundaresan, I. G., Bubble flow simulations with the lattice Boltzmann method, Chem Sci Eng, 54, 4817-4823 (1999)
[20] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys Rev E, 47, 1815-4327 (1993)
[21] Shan, X.; Doolen, G., Multicomponent lattice Boltzmann model with interparticle interaction, J Stat Phys, 81, 379-393 (1995) · Zbl 1106.82358
[22] Shan, X.; He, X., Discretization of the velocity space in the solution of the Boltzmann equation, Phys Rev Lett, 8, 65-68 (1998)
[23] Sankaranarayanan, K.; Shan, X.; Kevrekidis, K.; Sundaresan, I. G., Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method, J Fluid Mech, 452, 61-96 (2002) · Zbl 1059.76070
[24] Takada, N.; Misawa, M.; Tomiyama, A.; Fujiwara, S., Numerical simulation of two- and three-dimensional two-phase fluid motion by lattice Boltzmann method, Comput Phys Commun, 129, 233-246 (2000) · Zbl 0990.76071
[25] Swift, M. R.; Orlandini, E.; Osborn, W. R.; Yeomans, J. M., Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys Rev E, 54, 5041-5052 (1996)
[26] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput Phys, 39, 201-225 (1981) · Zbl 0462.76020
[27] Frank, X.; Funfschilling, D.; Midoux, N.; Li, H. Z., Bubble in a viscous liquid: lattice Boltzmann simulation and experimental validation, J Fluid Mech, 546, 113-122 (2006) · Zbl 1097.76058
[28] Inamuro, T.; Ogata, T.; Tajima, S.; Konishi, N., A lattice Boltzmann method for incompressible two-phase flows with large density differences, J Comput Phys, 198, 628-644 (2004) · Zbl 1116.76415
[29] Jacqmin, D., An energy approach to the continuum surface tension method, AIAA, 96-0858 (1996)
[30] Lee, T.; Lin, C.-L.; Chen, L.-D., A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame, J Comput Phys, 215, 133-152 (2006) · Zbl 1093.80003
[31] Lee, T.; Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary, fluids, Comput Math Appl, 58, 987-994 (2009) · Zbl 1189.76414
[32] Lee, T.; Fischer, P. F., Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gas, Phys Rev E, 74, 046709 (2006)
[33] He, X.; Chen, S.; Zhang, R., A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J Comput Phys, 152, 642-663 (1999) · Zbl 0954.76076
[34] Rowlinson, J.; Widom, B., Molecular theory of capillarity (2002), Dover Publications, Inc.: Dover Publications, Inc. New York
[35] Day, M. S.; Bell, J. B., Numerical simulation of laminar reacting flows with complex chemistry, Combust Theor Model, 4, 535-556 (2000) · Zbl 0970.76065
[36] Jacqmin, D., Calculation of two-phase Navier-Stokes flows using phase-field modeling, J Comput Phys, 155, 96-127 (1999) · Zbl 0966.76060
[37] Hua, J.; Lou, J., Numerical simulation of bubble rising in viscous liquid, J Comput Phys, 222, 769-795 (2007) · Zbl 1158.76404
[38] Holdych, D. J.; Rovas, D.; Georgiadis, J. G.; Bukius, R. O., An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models, Int J Mod Phys C, 9, 1393 (1998)
[39] Bonometti, T.; Magnaudet, J., An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics, Int J Multiphase Flow, 33, 109-133 (2007)
[40] Bunner, B.; Tryggvason, G., Dynamics of homogeneous bubbly flows Part 1. Rise velocity and microstructure of the bubbles, J Fluid Mech, 466, 17-52 (2002) · Zbl 1042.76058
[41] Rodrigue, D., Generalized correlation for bubble motion, AIChE J, 47, 39-44 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.