×

Finite-time blow-up and boundedness in a 2D Keller-Segel system with rotation. (English) Zbl 1505.35054

Summary: This paper deals with the initial-boundary value problem for a Keller-Segel system with rotation \[ \begin{cases} u_t=\Delta u-\nabla\cdot(uS_\theta\nabla\nu),\quad & x\in\Omega,t>0,\\ 0=\Delta\nu-\nu+u,\quad & x\in\Omega,t>0, \end{cases}\tag{\(\star\)} \] with zero-flux boundary condition for \(u\) and zero-Neumann boundary condition for \(v\), where \(\Omega\) is a bounded domain in \(\mathbb{R}^2\) with smooth boundary \(\partial\Omega\), \[ S_\theta=\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}, \] is a rotation matrix with \(\theta\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\). We show that:
Let \(\Omega\subset\mathbb{R}^2\) be a general smooth bounded domain.
*
If \(m>\frac{8\pi}{\cos\theta}\), then there exists nonnegative initial data \(u_0\) satisfying \(\int_\Omega u_0\mathrm{d}x=m\), such that the corresponding nonradial solution of system \((\star)\) blows up in finite time and the blow-up point lies in \(\Omega \).
*
If \(m>\frac{4\pi}{\cos\theta}\) and \(\partial\Omega\) contains a line segment, then there exists nonnegative initial data \(u_0\) satisfying \(\int_\Omega u_0\mathrm{d}x=m\), such that the corresponding nonradial solution of system \((\star)\) blows up in finite time and the blow-up point lies on the line segment of \(\partial\Omega\).
Let \(\Omega=B_R(0)\) be a disc in \(\mathbb{R}^2\) with radius \(R>0\) centered at origin. Although there is a rotation effect in system \((\star)\), solutions still preserve radial symmetry of initial data. If nonnegative radially symmetric initial data \(u_0\) satisfies \(\int_\Omega u_0\mathrm{d}x<\frac{8\pi}{\cos\theta}\), then the corresponding radial solution of system \((\star)\) exists globally in time and is globally bounded.

MSC:

35B44 Blow-up in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-763 (2015) · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[2] Biler, P.; Hebisch, W.; Nadzieja, T., The Debye system: existence and large time behavior of solutions, Nonlinear Anal., 23, 1189-209 (1994) · Zbl 0814.35054 · doi:10.1016/0362-546X(94)90101-5
[3] Cao, X., Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term, J. Differ. Equ., 261, 6883-914 (2016) · Zbl 1352.35092 · doi:10.1016/j.jde.2016.09.007
[4] Cao, X.; Ishida, S., Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation, Nonlinearity, 27, 1899-913 (2014) · Zbl 1301.35056 · doi:10.1088/0951-7715/27/8/1899
[5] Cao, X.; Lankeit, J., Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differ. Equ., 55, 107 (2016) · Zbl 1366.35075 · doi:10.1007/s00526-016-1027-2
[6] Chen, Y., Second Order Partial Differential Equations of Parabolic Type (Chinese) (2003), Beijing: Peking University Press, Beijing
[7] Collot, C.; Ghoul, T-E; Masmoudi, N.; Nguyen, V. T., Refined description and stability for singular solutions of the 2D Keller-Segel system, Commun. Pure Appl. Math., 75, 1419-516 (2022) · Zbl 1501.35408 · doi:10.1002/cpa.21988
[8] Diluzio, W.; Turner, L.; Mayer, M.; Garstecki, P.; Weibel, D.; Berg, H.; Whitesides, G., Escherichia coli swim on the right-hand side, Nature, 435, 1271-4 (2005) · doi:10.1038/nature03660
[9] Dong, Y.; Xiang, Z., Global large-data generalized solutions in a chemotactic movement with rotational flux caused by two stimuli, Nonlinear Anal. Real World Appl., 41, 549-69 (2018) · Zbl 1486.35257 · doi:10.1016/j.nonrwa.2017.11.009
[10] Espejo, E.; Wu, H., Optimal critical mass for the two-dimensional Keller-Segel model with rotational flux terms, Commun. Math. Sci., 18, 379-94 (2020) · Zbl 1468.35021 · doi:10.4310/CMS.2020.v18.n2.a5
[11] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107 (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[12] Jäger, W.; Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Am. Math. Soc., 329, 819-24 (1992) · Zbl 0746.35002 · doi:10.1090/S0002-9947-1992-1046835-6
[13] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[14] Ladyzenskaja, N. U O. A.; Solonnikov, V. A., Linear and Quasi-Linear Equations of Parabolic Type (1968), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0174.15403
[15] Li, T.; Suen, A.; Winkler, M.; Xue, C., Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms, Math. Models Methods Appl. Sci., 25, 721-46 (2015) · Zbl 1322.35054 · doi:10.1142/S0218202515500177
[16] Lieberman, G. M., Second Order Parabolic Differential Equations (2005), Singapore: World Scientific, Singapore
[17] Mizoguchi, N., Refined asymptotic behavior of blowup solutions to a simplified chemotaxis system, Commun. Pure Appl. Math., 75, 1870-86 (2022) · Zbl 1498.35112 · doi:10.1002/cpa.21954
[18] Mizoguchi, NWinkler, M2014Blow-up in the two-dimensional parabolic Keller-Segel systemPreprint
[19] Nagai, T., Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5, 581-601 (1995) · Zbl 0843.92007
[20] Nagai, T., Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6, 37-55 (2001) · Zbl 0990.35024
[21] Nagai, T.; Senba, T.; Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, 40, 411-33 (1997) · Zbl 0901.35104
[22] Patlak, C. S., Random walk with persistence and external bias, Bull. Math. Biophys., 15, 311-38 (1953) · Zbl 1296.82044 · doi:10.1007/BF02476407
[23] Peng, Y.; Xiang, Z., Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux, Z. Angew. Math. Phys., 68, 68 (2017) · Zbl 1386.35189 · doi:10.1007/s00033-017-0816-6
[24] Raphaël, P.; Schweyer, R., On the stability of critical chemotactic aggregation, Math. Ann., 359, 267-377 (2014) · Zbl 1320.35100 · doi:10.1007/s00208-013-1002-6
[25] Senba, T.; Suzuki, T., Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods Appl. Anal., 8, 349-67 (2001) · Zbl 1056.92007 · doi:10.4310/MAA.2001.v8.n2.a9
[26] Souplet, P.; Winkler, M., Blow-up profiles for the parabolic-elliptic Keller-Segel system in dimensions \(####\), Commun. Math. Phys., 367, 665-81 (2019) · Zbl 1411.35140 · doi:10.1007/s00220-018-3238-1
[27] Tao, Y.; Winkler, M., Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differ. Equ., 257, 784-815 (2014) · Zbl 1295.35144 · doi:10.1016/j.jde.2014.04.014
[28] Wang, Y., Global bounded weak solutions to a degenerate quasilinear attraction-repulsion chemotaxis system with rotation, Comput. Math. Appl., 72, 2226-40 (2016) · Zbl 1367.92020 · doi:10.1016/j.camwa.2016.08.024
[29] Wang, Y., Global bounded weak solutions to a degenerate quasilinear chemotaxis system with rotation, Math. Methods Appl. Sci., 39, 1159-75 (2016) · Zbl 1335.35107 · doi:10.1002/mma.3561
[30] Wang, Y.; Cao, X., Global classical solutions of a 3D chemotaxis-Stokes system with rotation, Discrete Continuous Dyn. Syst. B, 20, 3235-54 (2015) · Zbl 1322.35061 · doi:10.3934/dcdsb.2015.20.3235
[31] Wang, Y.; Winkler, M.; Xiang, Z., Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa-Cl. Sci., 18, 421-66 (2018) · Zbl 1395.92024 · doi:10.2422/2036-2145.201603_004
[32] Wang, Y.; Xiang, Z., Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation, J. Differ. Equ., 259, 7578-609 (2015) · Zbl 1323.35071 · doi:10.1016/j.jde.2015.08.027
[33] Wang, Y.; Xiang, Z., Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: the 3D case, J. Differ. Equ., 261, 4944-73 (2016) · Zbl 1345.35054 · doi:10.1016/j.jde.2016.07.010
[34] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-905 (2010) · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[35] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-67 (2013) · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[36] Winkler, M., Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differ. Equ., 54, 3789-828 (2015) · Zbl 1333.35104 · doi:10.1007/s00526-015-0922-2
[37] Winkler, M., Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47, 3092-115 (2015) · Zbl 1330.35202 · doi:10.1137/140979708
[38] Winkler, M., Can fluid interaction influence the critical mass for taxis-driven blow-up in bounded planar domains?, Acta Appl. Math., 169, 577-91 (2020) · Zbl 1464.35046 · doi:10.1007/s10440-020-00312-2
[39] Xue, C.; Othmer, H. G., Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math., 70, 133-67 (2009) · Zbl 1184.35308 · doi:10.1137/070711505
[40] Zhang, Q., Boundedness in chemotaxis systems with rotational flux terms, Math. Nachr., 289, 2323-34 (2016) · Zbl 1356.35062 · doi:10.1002/mana.201500325
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.