×

Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term. (English) Zbl 1352.35092

The Navier-Stokes equations coupled with the Keller-Segel system with rather general matrix-valued sensitivity function are considered in two space dimensions, and the Stokes-Keller-Segel system in three dimensions. Under smallness assumptions on the initial concentration of the chemoattractant, the global in time existence of classical solutions is proved together with some stabilization estimates.

MSC:

35Q30 Navier-Stokes equations
92C17 Cell movement (chemotaxis, etc.)
35K45 Initial value problems for second-order parabolic systems

References:

[1] Bellomo, N.; Belloquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015) · Zbl 1326.35397
[2] Cao, X.; Ishida, S., Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation, Nonlinearity, 27, 1899-1913 (2014) · Zbl 1301.35056
[3] Cao, X.; Lankeit, J., Global classical solutions in three-dimensional chemotaxis-Navier-Stokes system involving matrix-valued sensitivity, Calc. Var. Partial Differential Equations, 55, 4, 55-107 (2016) · Zbl 1366.35075
[4] Chae, M.; Kang, K.; Lee, J., Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39, 7, 1205-1235 (2014) · Zbl 1304.35481
[5] Chae, M.; Kang, K.; Lee, J., Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst., 33, 6, 2271-2297 (2013) · Zbl 1277.35276
[6] Duan, R.; Lorz, A.; Markowich, P., Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35, 9, 1635-1673 (2010) · Zbl 1275.35005
[7] Duan, R.; Xiang, Z., A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not. IMRN, 7, 1833-1852 (2014) · Zbl 1323.35184
[8] Giga, Y., Analyticity of the semigroup generated by the Stokes operator in \(L_r\) spaces, Math. Z., 178, 3, 297-329 (1981) · Zbl 0473.35064
[9] Giga, Y.; Sohr, H., Abstract \(L^p\) estimates for the cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102, 1, 72-94 (1991) · Zbl 0739.35067
[10] Hillen, T.; Painter, K. J., A user’s guide for PDE models for chemotaxis, J. Math. Biol., 58, 1-2, 183-217 (2009) · Zbl 1161.92003
[11] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber. Dtsch. Math.-Ver., 105, 3, 103-165 (2003) · Zbl 1071.35001
[12] Ishida, S., Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains, Discrete Contin. Dyn. Syst., 35, 8, 3463-3482 (2015) · Zbl 1308.35214
[13] Kozono, H.; Miura, M.; Sugiyama, Y., Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid, J. Funct. Anal., 270, 5, 1663-1683 (2016) · Zbl 1343.35069
[14] Ladyzhenskaya, O.; Solonnikov, V.; Uratseva, N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23 (1968), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0174.15403
[15] Li, T.; Suen, A.; Winkler, M.; Xue, C., Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms, Math. Models Methods Appl. Sci., 25, 4, 721-746 (2015) · Zbl 1322.35054
[17] Liu, J.; Lorz, A., A coupled chemotaxis-fluid model: global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 5, 643-652 (2011) · Zbl 1236.92013
[18] Lorz, A., Coupled chemotaxis-fuidmodel, Math. Models Methods Appl. Sci., 20, 6, 987-1004 (2010) · Zbl 1191.92004
[19] Pazy, A., Semigroups of Linear Operators and Its Applications to Partial Differential Equations (2012), Springer Science Business Media · Zbl 0516.47023
[20] Porzio, M. M.; Verpri, V., Hölder estimates for local solutions of some doubly nonlinear degenerate equations, J. Differential Equations, 103, 146-178 (1993) · Zbl 0796.35089
[21] Sohr, H., The Navier-Stokes Equations: An Elementary Functional Analytic Approach (2001), Birkhäuser Verlag: Birkhäuser Verlag Besel · Zbl 0983.35004
[22] Solonnnikov, V. A., Schauder Estimates for the Evolutionary Generalized Stokes Problem, 197-205 (2007), Amer. Math. Soc. Transl · Zbl 1123.35005
[23] Tan, Z.; Zhang, X., Decay estimates of the coupled chemotaxis-fluid equations in \(R^3\), J. Math. Anal. Appl., 410, 1, 27-38 (2014) · Zbl 1333.92015
[24] Tao, Y., Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381, 2, 521-529 (2011) · Zbl 1225.35118
[25] Tao, Y.; Winkler, M., Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252, 2520-2543 (2012) · Zbl 1268.35016
[26] Tao, Y.; Winkler, M., Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., 32, 5, 1901-1914 (2012) · Zbl 1276.35105
[27] Tao, Y.; Winkler, M., Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 1, 157-178 (2013) · Zbl 1283.35154
[28] Tuval, I.; Cisneros, L.; Dombrowski, C.; Wolgemuth, C. W.; Kessler, J. O.; Goldstein, R. E., Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102, 2277-2282 (2005) · Zbl 1277.35332
[29] Wang, Y.; Cao, X., Global solutions of a 3D chemotaxis-Stokes system with rotation, Discrete Contin. Dyn. Syst. Ser. B, 20, 3235-3254 (2015) · Zbl 1322.35061
[30] Wang, Y.; Xiang, Z., Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation, J. Differential Equations, 259, 12, 7578-7609 (2015) · Zbl 1323.35071
[31] Wiegner, M., The Navier-Stokes equations - a never ending challenge?, Jahresber. Dtsch. Math.-Ver., 101, 1, 1-25 (1999) · Zbl 0924.35100
[32] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248, 12, 2889-2905 (2010) · Zbl 1190.92004
[33] Winkler, M., Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37, 319-351 (2012) · Zbl 1236.35192
[34] Winkler, M., Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211, 2, 455-487 (2014) · Zbl 1293.35220
[35] Winkler, M., Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283, 11, 1664-1673 (2010) · Zbl 1205.35037
[36] Winkler, M., Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 5, 1329-1352 (2016) · Zbl 1351.35239
[37] Winkler, M., How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc. (2016)
[39] Winkler, M., Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47, 4, 3092-3115 (2015) · Zbl 1330.35202
[40] Winkler, M., Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differential Equations, 54, 4, 3789-3828 (2015) · Zbl 1333.35104
[41] Xue, C.; Othmer, H. G., Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math., 70, 1, 133-167 (2009) · Zbl 1184.35308
[42] Zhang, Q.; Li, Y., Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system, Discrete Contin. Dyn. Syst. Ser. B, 20, 2751-2759 (2015) · Zbl 1334.35104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.