×

Certain Grüss-type inequalities via tempered fractional integrals concerning another function. (English) Zbl 1503.26073

Summary: We study a generalized left sided tempered fractional (GTF)-integral concerning another function \(\Psi\) in the kernel. Then we investigate several kinds of inequalities such as Grüss-type and certain other related inequalities by utilizing the GTF-integral. Additionally, we present various special cases of the main result. By utilizing the connection between GTF-integral and Riemann-Liouville integral concerning another function \(\Psi\) in the kernel, certain distinct particular cases of the main result are also presented. Furthermore, certain other inequalities can be formed by applying various kinds of conditions on the function \(\Psi \).

MSC:

26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals
34A08 Fractional ordinary differential equations
26D10 Inequalities involving derivatives and differential and integral operators
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)

References:

[1] Kilbas, A. A.; Sarivastava, H. M.; Trujillo, J. J., Theory and Application of Fractional Differential Equation (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[2] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, Theory and Applications (1993), Yverdon: Gordon & Breach, Yverdon · Zbl 0818.26003
[3] Podlubny, I., Fractional Differential Equations (1999), London: Academic Press, London · Zbl 0918.34010
[4] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002
[5] Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
[6] Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279, 57-66 (2015) · Zbl 1304.26004 · doi:10.1016/j.cam.2014.10.016
[7] Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D., On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017) · Zbl 1422.26004 · doi:10.1186/s13662-017-1306-z
[8] Anderson, D. R.; Ulness, D. J., Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10, 2, 109-137 (2015)
[9] Abdeljawad, T.; Baleanu, D., Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 2017 (2017) · Zbl 1422.39048 · doi:10.1186/s13662-017-1126-1
[10] Abdeljawad, T.; Baleanu, D., On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80, 11-27 (2017) · Zbl 1384.26025 · doi:10.1016/S0034-4877(17)30059-9
[11] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20, 763-769 (2016) · doi:10.2298/TSCI160111018A
[12] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 2, 73-85 (2015)
[13] Losada, J.; Nieto, J. J., Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 2, 87-92 (2015)
[14] Khan, H.; Khan, A.; Chen, W.; Shah, K., Stability analysis and a numerical scheme for fractional Klein-Gordon equations, Math. Methods Appl. Sci., 42, 2, 723-732 (2019) · Zbl 1408.35213 · doi:10.1002/mma.5375
[15] Khan, H.; Khan, A.; Abdeljawad, T.; Alkhazzan, A., Existence results in Banach space for a nonlinear impulsive system, Adv. Differ. Equ., 2019 (2019) · Zbl 1458.34127 · doi:10.1186/s13662-019-1965-z
[16] Baleanu, D.; Jafari, H.; Khan, H.; Johnston, S. J., Results for mild solution of fractional coupled hybrid boundary value problems, Open Math., 13, 601-608 (2015) · Zbl 1350.34004 · doi:10.1515/math-2015-0055
[17] Khan, H.; Abdeljawad, T.; Tunç, C., Minkowski’s inequality for the AB-fractional integral operator, J. Inequal. Appl., 2019 (2019) · Zbl 1499.26135 · doi:10.1186/s13660-019-2045-3
[18] Khan, H.; Tunç, C.; Baleanu, D.; Khan, A.; Alkhazzan, A., Inequalities for n-class of functions using the Saigo fractional integral operator, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 113, 2407-2420 (2019) · Zbl 1437.52005 · doi:10.1007/s13398-019-00624-5
[19] Alzabut, J.; Abdeljawad, T.; Jarad, F.; Sudsutad, W., A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 2019 (2019) · Zbl 1499.26092 · doi:10.1186/s13660-019-2052-4
[20] Rahman, G.; Khan, A.; Abdeljawad, T.; Nisar, K. S., The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Differ. Equ., 2019 (2019) · Zbl 1485.26026 · doi:10.1186/s13662-019-2229-7
[21] Rahman, G.; Abdeljawad, T.; Khan, A.; Nisar, K. S., Some fractional proportional integral inequalities, J. Inequal. Appl., 2019 (2019) · Zbl 1499.26171 · doi:10.1186/s13660-019-2199-z
[22] Rahman, G.; Abdeljawad, T.; Jarad, F.; Khan, A.; Nisar, K. S., Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2019 (2019) · Zbl 1485.45015 · doi:10.1186/s13662-019-2381-0
[23] Huang, C. J.; Rahman, G.; Nisar, K. S.; Ghaffar, A.; Qi, F., Some inequalities of Hermite-Hadamard type for k-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16, 1, 1-9 (2019) · Zbl 1407.26022
[24] Mubeen, S.; Habib, S.; Naeem, M. N., The Minkowski inequality involving generalized k-fractional conformable integral, J. Inequal. Appl., 2019 (2019) · Zbl 1499.26152 · doi:10.1186/s13660-019-2040-8
[25] Nisar, K. S.; Rahman, G.; Mehrez, K., Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019) · Zbl 1499.26154 · doi:10.1186/s13660-019-2197-1
[26] Niasr, K. S.; Tassadiq, A.; Rahman, G.; Khan, A., Some inequalities via fractional conformable integral operators, J. Inequal. Appl., 2019 (2019) · Zbl 1499.26155 · doi:10.1186/s13660-019-2170-z
[27] Qi, F.; Rahman, G.; Hussain, S. M.; Du, W. S.; Nisar, K. S., Some inequalities of Čebyšev type for conformable k-fractional integral operators, Symmetry, 10 (2018) · Zbl 1423.26013 · doi:10.3390/sym10110614
[28] Rahman, G.; Nisar, K. S.; Qi, F., Some new inequalities of the Gruss type for conformable fractional integrals, AIMS Math., 3, 4, 575-583 (2018) · Zbl 1428.26014 · doi:10.3934/Math.2018.4.575
[29] Rahman, G.; Nisar, K. S.; Ghaffar, A.; Qi, F., Some inequalities of the Grüss type for conformable k-fractional integral operators, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 114 (2020) · Zbl 1434.26065 · doi:10.1007/s13398-019-00731-3
[30] Rahman, G.; Ullah, Z.; Khan, A.; Set, E.; Nisar, K. S., Certain Chebyshev type inequalities involving fractional conformable integral operators, Mathematics, 7 (2019) · doi:10.3390/math7040364
[31] Rahmnan, G.; Abdeljawad, T.; Jarad, F.; Nisar, K. S., Bounds of generalized proportional fractional integrals in general form via convex functions and their applications, Mathematics, 8 (2020) · doi:10.3390/math8010113
[32] Rashid, S.; Jarad, F.; Noor, M. A.; Kalsoom, H.; Chu, Y.-M., Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2019) · doi:10.3390/math7121225
[33] Mohammed, P. O.; Hamasalh, F. K., New conformable fractional integral inequalities of Hermite-Hadamard type for convex functions, Symmetry, 11 (2019) · Zbl 1416.26037 · doi:10.3390/sym11020263
[34] Grüss, G., Uber, das Maximum des absoluten Betrages von \(\frac{1}{b-a}\int_a^b\mathcal{U(\varrho )} \mathcal{V(\varrho )}\,d\varrho -\frac{1}{(b-a)^2}\int_a^b \mathcal{U(\varrho )}\,d\varrho \int_a^b\mathcal{V(\varrho )}\,d \varrho \), Math. Z., 39, 215-226 (1935) · JFM 60.0189.02 · doi:10.1007/BF01201355
[35] Yildirim, H.; Kirtay, Z., Ostrowski inequality for generalized fractional integral and related inequalities, Malaya J. Mat., 2, 322-329 (2014) · Zbl 1371.26041
[36] Katugampola, U. N., Approach to a generalized fractional integral, Appl. Math. Comput., 218, 860-865 (2011) · Zbl 1231.26008
[37] Kacar, E.; Kacar, Z.; Yildirim, H., Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function, Iran. J. Math. Sci. Inform., 13, 1-13 (2018) · Zbl 1458.26011 · doi:10.22457/jmi.v13a1
[38] Buschman, R. G., Decomposition of an integral operator by use of Mikusenski calculus, SIAM J. Math. Anal., 3, 1, 83-85 (1972) · Zbl 0233.45019 · doi:10.1137/0503010
[39] Li, C.; Deng, W.; Zhao, L., Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst., Ser. B, 24, 4, 1989-2015 (2019) · Zbl 1414.34005
[40] Meerschaert, M. M.; Sabzikar, F.; Chen, J., Tempered fractional calculus, J. Comput. Phys., 293, 14-28 (2015) · Zbl 1349.26017 · doi:10.1016/j.jcp.2014.04.024
[41] Fernandez, A.; Ustaǧlu, C., On some analytic properties of tempered fractional calculus, J. Comput. Appl. Math. (2019) · Zbl 1428.26012 · doi:10.1016/j.cam.2019.112400
[42] Fahad, H.M., Fernandez, A., Rehman, M.U., Siddiqi, M.: Tempered and Hadamard-type fractional calculus with respect to functions (11 Dec 2019) arXiv:1907.04551v2 [math.CA]
[43] Khan, T. U.; Khan, M. A., Generalized conformable fractional integral operators, J. Comput. Appl. Math. (2018) · Zbl 1401.26012 · doi:10.1016/j.cam.2018.07.018
[44] Kreyszig, E., Introductory Functional Analysis with Applications (1989), New York: Wiley, New York · Zbl 0706.46001
[45] Tariboon, J.; Ntouyas, S. K.; Sudsutad, W., Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Sci., 2014 (2014) · Zbl 1286.26020 · doi:10.1155/2014/869434
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.