×

A Gronwall inequality via the generalized proportional fractional derivative with applications. (English) Zbl 1499.26092

Summary: In this paper, we provide a new version for the Gronwall inequality in the frame of the generalized proportional fractional derivative. Prior to the main results, we introduce the generalized proportional fractional derivative and expose some of its features. As an application, we accommodate the newly defined derivative to prove the uniqueness and obtain a bound in terms of Mittag-Leffler function for the solutions of a nonlinear delay proportional fractional system. An example is presented to demonstrate the applicability of the theory.

MSC:

26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals
33E12 Mittag-Leffler functions and generalizations

References:

[1] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1952) · Zbl 0047.05302
[2] Bainov, D.D., Simeonov, P.: Integral Inequalities and Applications. Mathematics and Its Applications. Springer, Berlin (1992) · Zbl 0759.26012 · doi:10.1007/978-94-015-8034-2
[3] Cloud, J.M., Drachman, C.B., Lebedev, P.L.: Inequalities with Applications to Engineering. Springer, Berlin (2014) · Zbl 1295.26002
[4] Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20, 292-296 (1919) · JFM 47.0399.02 · doi:10.2307/1967124
[5] Rasmussen, D.L.: Gronwall’s inequality for functions of two independent variables. J. Math. Anal. Appl. 55(2), 407-417 (1976) · Zbl 0333.26006 · doi:10.1016/0022-247X(76)90171-2
[6] Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. RGMIA Monographs, Victoria University (2003) · Zbl 1094.34001
[7] Lin, X.: A note on Gronwall’s inequality on time scales. Abstr. Appl. Anal. 2014, Article ID 623726 (2014) · Zbl 1474.26118
[8] Wang, W., Feng, Y., Wang, Y.: Nonlinear Gronwall-Bellman type inequalities and their applications. Mathematics 5, 31 (2017). https://doi.org/10.3390/math5020031 · Zbl 1366.26031 · doi:10.3390/math5020031
[9] Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000) · Zbl 0998.26002 · doi:10.1142/3779
[10] Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003(54), 3413-3442 (2003) · Zbl 1036.26004 · doi:10.1155/S0161171203301486
[11] Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. North Holland Mathematics Studies, vol. 204 (2006) · Zbl 1092.45003
[12] Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006)
[13] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993) · Zbl 0818.26003
[14] Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999) · Zbl 0924.34008
[15] Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73-85 (2015)
[16] Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernels. Therm. Sci. 20, 757-763 (2016) · doi:10.2298/TSCI160111018A
[17] Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075-1081 (2007) · Zbl 1120.26003 · doi:10.1016/j.jmaa.2006.05.061
[18] Ferreira, R.A.C.: A discrete fractional Gronwall inequality. Proc. Am. Math. Soc. 5, 1605-1612 (2012) · Zbl 1243.26012 · doi:10.1090/S0002-9939-2012-11533-3
[19] Abdeljawad, T., Alzabut, J., Baleanu, D.: A generalized q-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems. J. Inequal. Appl. 2016, 240 (2016) · Zbl 1353.39009 · doi:10.1186/s13660-016-1181-2
[20] Zhang, Z., Wei, Z.: A generalized Gronwall inequality and its application to fractional neutral evolution inclusions. J. Inequal. Appl. 2016, 45 (2016) · Zbl 1335.34122 · doi:10.1186/s13660-016-0991-6
[21] Sarikaya, M.Z.: Gronwall type inequalities for conformable fractional integrals. Konuralp J. Math. 4(2), 217-222 (2016) · Zbl 1355.26033
[22] Alzabut, J., Abdeljawad, T.: A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system. Appl. Anal. Discrete Math. 12, 36-48 (2018) · Zbl 1499.39012 · doi:10.2298/AADM1801036A
[23] Abdeljawad, T.: A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. J. Inequal. Appl. 2018, 143 (2018) · Zbl 1498.34061 · doi:10.1186/s13660-018-1731-x
[24] Abdeljawad, T.: Fractional operators with exponential kernels and a Lyapunov type inequality. Adv. Differ. Equ. 2017, 313 (2017) · Zbl 1444.26003 · doi:10.1186/s13662-017-1285-0
[25] Abdeljawad, T., Alzabut, J., Jarad, F.: A generalized Lyapunov-type inequality in the frame of conformable derivatives. Adv. Differ. Equ. 2017, 321 (2017) · Zbl 1444.34045 · doi:10.1186/s13662-017-1383-z
[26] Abdeljawad, T., Agarwal, R., Alzabut, J., Jarad, F., Özbekler, A.: Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives. J. Inequal. Appl. 2018, 143 (2018) · Zbl 1498.34061 · doi:10.1186/s13660-018-1731-x
[27] Abdeljawad, T., Madjidi, F.: Lyapunov-type inequalities for fractional difference operators with discrete Mittag-Leffler kernel of order 2<α<\(5/22 < \alpha < 5/2\). Eur. Phys. J. Spec. Top. 226(16-18), 3355-3368 (2017) · doi:10.1140/epjst/e2018-00004-2
[28] Jarad, F., Abdeljawad, T., Hammouch, Z.: On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative. Chaos Solitons Fractals 117, 16-20 (2018) · Zbl 1442.34016 · doi:10.1016/j.chaos.2018.10.006
[29] Jarad, F., Abdeljawad, T., Alzabut, J.: Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 226(16-18), 3457-3471 (2017) · doi:10.1140/epjst/e2018-00021-7
[30] Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57-66 (2015) · Zbl 1304.26004 · doi:10.1016/j.cam.2014.10.016
[31] Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
[32] Anderson, D.R., Ulness, D.J.: Newly defined conformable derivatives. Adv. Dyn. Syst. Appl. 10(2), 109-137 (2015)
[33] Anderson, D.R.: Second-order self-adjoint differential equations using a proportional-derivative controller. Commun. Appl. Nonlinear Anal. 24, 17-48 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.