×

Sparse Monte Carlo method for nonlocal diffusion problems. (English) Zbl 1502.65125

A numerical method for solving nonlocal, nonlinear diffusion equations like \[ u_t(t,x)=\int W(x,y)D(u(t,y)-u(t,x))dy+f(u,x,t) \] is proposed. The motivation for study such equations stems from modeling propagation phenomena in continuous media with nonlocal interactions. This numerical method combines sparse Monte Carlo and discontinuous Galerkin methods. Under suitable assumptions on the kernel \(W\), Lipschitz continuity of the function \(D\) and “nonhomogeneous” term \(f\), convergence of the proposed numerical method is shown together with estimations of errors. Numerical examples are provided.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
65C05 Monte Carlo methods
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

References:

[1] Akhieser, N. I., Theory of Approximation, Dover Publications, New York, 1992.
[2] Andreu-Vaillo, F., Mazón, J. M., Rossi, J. D., and Toledo-Melero, J. J., Nonlocal Diffusion Problems, Math. Surveys Monographs 165, AMS, Providence, RI, 2010. · Zbl 1214.45002
[3] Atkinson, K. E., An Introduction to Numerical Analysis, 2nd ed., John Wiley & Sons, New York, 1989. · Zbl 0718.65001
[4] Banjai, L., Melenk, J. M., Nochetto, R. H., Otárola, E., Salgado, A. J., and Schwab, C., Tensor FEM for spectral fractional diffusion, Found. Comput. Math., 19 (2019), pp. 901-962. · Zbl 1429.65272
[5] Bonito, A., Borthagaray, J. P., Nochetto, R. H., Otárola, E., and Salgado, A. J., Numerical methods for fractional diffusion, Comput. Vis. Sci., 19 (2018), pp. 19-46. · Zbl 07704543
[6] Borgs, C., Chayes, J. T., Cohn, H., and Zhao, Y., An \(L^p\) theory of sparse graph convergence I: Limits, sparse random graph models, and power law distributions, Trans. Amer. Math. Soc., 372 (2019), pp. 3019-3062. · Zbl 1417.05186
[7] Bournaveas, N. and Calvez, V., The one-dimensional Keller-Segel model with fractional diffusion of cells, Nonlinearity, 23 (2010), pp. 923-935. · Zbl 1195.35065
[8] Carrillo, C. and Fife, P., Spatial effects in discrete generation population models, J. Math. Biol., 50 (2005), pp. 161-188. · Zbl 1080.92054
[9] Coombes, S., Beim Graben, P., and Potthast, R., Tutorial on neural field theory, in Neural Fields, Springer, Heidelberg, 2014, pp. 1-43. · Zbl 1462.92011
[10] Coppini, F., Dietert, H., and Giacomin, G., A Law of Large Numbers and Large Deviations for Interacting Diffusions on Erdos-Renyi Graphs, Stoch. Dyn.20 (2020), no. 2. · Zbl 1434.60279
[11] de Pablo, A., Quirós, F., and Rodríguez, A., Nonlocal filtration equations with rough kernels, Nonlinear Anal., 137 (2016), pp. 402-425. · Zbl 1334.35409
[12] del Teso, F., Endal, J., and Jakobsen, E. R., Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type, Adv. Math., 305 (2017), pp. 78-143. · Zbl 1349.35311
[13] DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Grundlehren Math. Wiss. 303, Springer-Verlag, Berlin, 1993. · Zbl 0797.41016
[14] Du, Q., An invitation to nonlocal modeling, analysis, and computation, in Proceedings of the International Conference of Mathematicians, , Vol. 3, 2018, pp. 3523-3552.
[15] Du, Q., Ju, L., and Lu, J., A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems, Math. Comp., 88 (2019), pp. 123-147. · Zbl 1405.65118
[16] Evans, L. C. and Gariepy, R. F., Measure Theory and Fine Properties of Functions, Textb. Math., revised ed., CRC Press, Boca Raton, FL, 2015. · Zbl 1310.28001
[17] Falconer, K., Fractal Geometry, Math. Found. Appl., 3rd ed., John Wiley & Sons, Chichester, UK, 2014. · Zbl 1285.28011
[18] Golse, F., On the dynamics of large particle systems in the mean field limit, in Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, , Springer, Cham, 2016, pp. 1-144.
[19] Kaliuzhnyi-Verbovetskyi, D. and Medvedev, G. S., The semilinear heat equation on sparse random graphs, SIAM J. Math. Anal., 49 (2017), pp. 1333-1355. · Zbl 1377.34048
[20] Laing, C. R., Chimeras in two-dimensional domains: Heterogeneity and the continuum limit, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 974-1014. · Zbl 1392.34035
[21] Lovász, L., Large Networks and Graph Limits, AMS, Providence, RI, 2012. · Zbl 1292.05001
[22] Lovász, L. and Szegedy, B., Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006), pp. 933-957. · Zbl 1113.05092
[23] Medvedev, G. S., The nonlinear heat equation on dense graphs and graph limits, SIAM J. Math. Anal., 46 (2014), pp. 2743-2766. · Zbl 1307.34062
[24] Medvedev, G. S., The nonlinear heat equation on W-random graphs, Arch. Ration. Mech. Anal., 212 (2014), pp. 781-803. · Zbl 1293.35333
[25] Medvedev, G. S., Small-world networks of Kuramoto oscillators, Phys. D, 266 (2014), pp. 13-22. · Zbl 1286.34076
[26] Medvedev, G. S., The continuum limit of the Kuramoto model on sparse random graphs, Commun. Math. Sci., 17 (2019), pp. 883-898. · Zbl 1432.34045
[27] Medvedev, G. S. and Tang, X., Stability of twisted states in the Kuramoto model on Cayley and random graphs, J. Nonlinear Sci., 25 (2015), pp. 1169-1208. · Zbl 1337.34042
[28] Medvedev, G. S. and Tang, X., The Kuramoto model on power law graphs: Synchronization and contrast states, J. Nonlinear Sci., 30 (2020), pp. 2405-2427. · Zbl 1466.37069
[29] Medvedev, G. S. and Wright, J. D., Stability of twisted states in the continuum Kuramoto model, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 188-203. · Zbl 1377.35253
[30] Nochetto, R. H., Otárola, E., and Salgado, A. J., A PDE approach to space-time fractional parabolic problems, SIAM J. Numer. Anal., 54 (2016), pp. 848-873. · Zbl 1337.26014
[31] Nochetto, R. H., Otárola, E., and Salgado, A. J., A PDE approach to space-time fractional parabolic problems, SIAM J. Numer. Anal., 54 (2016), pp. 848-873. · Zbl 1337.26014
[32] Schwab, R. W. and Silvestre, L., Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE, 9 (2016), pp. 727-772. · Zbl 1349.47079
[33] Shen, W. and Xie, X., Approximations of random dispersal operators/equations by nonlocal dispersal operators/equations, J. Differential Equations, 259 (2015), pp. 7375-7405. · Zbl 1328.35069
[34] Vázquez, J. L., The mathematical theories of diffusion: Nonlinear and fractional diffusion, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, , Springer, Cham, 2017, pp. 205-278. · Zbl 1492.35151
[35] Wiley, D. A., Strogatz, S. H., and Girvan, M., The size of the sync basin, Chaos, 16 (2006), 015103. · Zbl 1144.37417
[36] Williams, D., Probability with Martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, UK, 1991. · Zbl 0722.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.