×

A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems. (English) Zbl 1405.65118

The study is related to a linear time-dependent nonlocal volume-constrained diffusion problem of the form \[ \begin{alignedat}{2} u_t+ L u & = f & \text{ in } & \Omega_s, \quad t>0,\\ u(x,0) & =u_0 & \text{ on } & \Omega_s \cup \Omega_c,\\ V u & =g & \text{ on } & \Omega_c,\quad t>0,\end{alignedat} \] where \(\Omega_s \in \mathbb R^n \) is a bounded open domain and the linear operator \(V\) imposes constraints on certain volumes \(\Omega_c \in \mathbb R^n\). The nonlocal operator is defined as \[ Lu(x)= -2 \int \limits_{\Omega_s \bigcup \Omega_c} (u(y)-u(x)) \gamma(x,y)\, dy \;\;\forall x \in \Omega_s. \] The kernel function is nonnegative and symmetric. Given that nonlocal diffusion problems allow their solutions to have spacial discontinuities, discontinuous Galerkin approximations become natural choices when numerical approximations are considered. The key idea of the designed method is the introduction of an auxiliary variable, analogous to the classic local discontinuous Galerkin method but with some nonlocal extensions. A theoretical study shows that the proposed semi-discrete scheme is \(L_2\)-stable, convergent and asymptotically compatible. Numerical tests are presented to demonstrate the effectiveness of the method.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
45K05 Integro-partial differential equations
35R09 Integro-partial differential equations
Full Text: DOI

References:

[1] ABLPSW E. Askari, F. Bobaru, R. B. Lehoucq, M. L. Parks, S. A. Silling, and O. Weckner, Peridynamics for multiscale materials modeling, Journal of Physics, Conference Series, 125 (2008), 012078.
[2] Andreu-Vaillo, Fuensanta; Maz\'on, Jos\'e M.; Rossi, Julio D.; Toledo-Melero, J. Juli\'an, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs 165, xvi+256 pp. (2010), American Mathematical Society, Providence, RI; Real Sociedad Matem\'atica Espa\~nola, Madrid · Zbl 1214.45002
[3] Bates, Peter W.; Chmaj, Adam, An integrodifferential model for phase transitions: stationary solutions in higher space dimensions, J. Statist. Phys., 95, 5-6, 1119-1139 (1999) · Zbl 0958.82015
[4] Chen, X.; Gunzburger, Max, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput. Methods Appl. Mech. Engrg., 200, 9-12, 1237-1250 (2011) · Zbl 1225.74082
[5] Cockburn, Bernardo; Hou, Suchung; Shu, Chi-Wang, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp., 54, 190, 545-581 (1990) · Zbl 0695.65066
[6] Ciarlet, Philippe G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4, xix+530 pp. (1978), North-Holland Publishing Co., Amsterdam-New York-Oxford · Zbl 0999.65129
[7] Cockburn, Bernardo; Lin, San Yih; Shu, Chi-Wang, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, J. Comput. Phys., 84, 1, 90-113 (1989) · Zbl 0677.65093
[8] Cockburn, Bernardo; Shu, Chi-Wang, The Runge-Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws, RAIRO Mod\'el. Math. Anal. Num\'er., 25, 3, 337-361 (1991) · Zbl 0732.65094
[9] Cockburn, Bernardo; Shu, Chi-Wang, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp., 52, 186, 411-435 (1989) · Zbl 0662.65083
[10] Cockburn, Bernardo; Shu, Chi-Wang, The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, J. Comput. Phys., 141, 2, 199-224 (1998) · Zbl 0920.65059
[11] Cockburn, Bernardo; Shu, Chi-Wang, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998) · Zbl 0927.65118
[12] Du, Qiang; Gunzburger, Max; Lehoucq, R. B.; Zhou, Kun, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54, 4, 667-696 (2012) · Zbl 1422.76168
[13] Du, Qiang; Gunzburger, Max; Lehoucq, R. B.; Zhou, Kun, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23, 3, 493-540 (2013) · Zbl 1266.26020
[14] Du, Qiang; Huang, Zhan; Lehoucq, Richard B., Nonlocal convection-diffusion volume-constrained problems and jump processes, Discrete Contin. Dyn. Syst. Ser. B, 19, 4, 961-977 (2014) · Zbl 1284.35223
[15] Du, Qiang; Yang, Jiang, Asymptotically compatible Fourier spectral approximations of nonlocal Allen-Cahn equations, SIAM J. Numer. Anal., 54, 3, 1899-1919 (2016) · Zbl 1342.65198
[16] Du, Qiang; Yang, Jiang; Zhou, Zhi, Analysis of a nonlocal-in-time parabolic equation, Discrete Contin. Dyn. Syst. Ser. B, 22, 2, 339-368 (2017) · Zbl 1362.45015
[17] Du, Qiang; Zhou, Kun, Mathematical analysis for the peridynamic nonlocal continuum theory, ESAIM Math. Model. Numer. Anal., 45, 2, 217-234 (2011) · Zbl 1269.45005
[18] Emmrich, Etienne; Weckner, Olaf, Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear elasticity, Math. Mech. Solids, 12, 4, 363-384 (2007) · Zbl 1175.74013
[19] Fife, Paul, Some nonclassical trends in parabolic and parabolic-like evolutions. Trends in Nonlinear Analysis, 153-191 (2003), Springer, Berlin · Zbl 1072.35005
[20] Gilboa, Guy; Osher, Stanley, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6, 2, 595-630 (2007) · Zbl 1140.68517
[21] Gilboa, Guy; Osher, Stanley, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 3, 1005-1028 (2008) · Zbl 1181.35006
[22] Mengesha, Tadele; Du, Qiang, The bond-based peridynamic system with Dirichlet-type volume constraint, Proc. Roy. Soc. Edinburgh Sect. A, 144, 1, 161-186 (2014) · Zbl 1381.35177
[23] RH W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, Tech. report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
[24] RWA B. Ren, C. T. Wu, and E. Askari, A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis, International Journal of Impact Engineering 99 (2017), 14-25.
[25] Rosasco, Lorenzo; Belkin, Mikhail; De Vito, Ernesto, On learning with integral operators, J. Mach. Learn. Res., 11, 905-934 (2010) · Zbl 1242.62059
[26] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elasticity, 88, 2, 151-184 (2007) · Zbl 1120.74003
[27] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030
[28] Silling, S. A., Linearized theory of peridynamic states, J. Elasticity, 99, 1, 85-111 (2010) · Zbl 1188.74008
[29] SL S. A. Silling and R. B. Lehoucq, Peridynamic theory of solid mechanics, Advances in Applied Mechanics 44 (2010), 73-168.
[30] SWAB S. A. Silling, O. Weckner, E. Askari, and F. Bobaru, Crack nucleation in a peridynamic solid, International Journal of Fracture 162 (2010), 219-227. · Zbl 1425.74045
[31] Silling, S. A.; Zimmermann, M.; Abeyaratne, R., Deformation of a peridynamic bar, J. Elasticity, 73, 1-3, 173-190 (2004) (2003) · Zbl 1061.74031
[32] Tian, Xiaochuan; Du, Qiand, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM J. Numer. Anal., 51, 6, 3458-3482 (2013) · Zbl 1295.82021
[33] Tian, Xiaochuan; Du, Qiang, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52, 4, 1641-1665 (2014) · Zbl 1303.65098
[34] Tian, Xiaochuan; Du, Qiang, Nonconforming discontinuous Galerkin methods for nonlocal variational problems, SIAM J. Numer. Anal., 53, 2, 762-781 (2015) · Zbl 1322.65109
[35] Tian, Xiaochuan; Du, Qiang; Gunzburger, Max, Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains, Adv. Comput. Math., 42, 6, 1363-1380 (2016) · Zbl 1356.65239
[36] Tian, Hao; Ju, Lili; Du, Qiang, Nonlocal convection-diffusion problems and finite element approximations, Comput. Methods Appl. Mech. Engrg., 289, 60-78 (2015) · Zbl 1423.74925
[37] Tian, Hao; Ju, Lili; Du, Qiang, A conservative nonlocal convection-diffusion model and asymptotically compatible finite difference discretization, Comput. Methods Appl. Mech. Engrg., 320, 46-67 (2017) · Zbl 1439.65134
[38] Tao, Yunzhe; Tian, Xiaochuan; Du, Qiang, Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations, Appl. Math. Comput., 305, 282-298 (2017) · Zbl 1411.74058
[39] Zhao, Yanxiang; Wang, Jiakou; Ma, Yanping; Du, Qiang, Generalized local and nonlocal master equations for some stochastic processes, Comput. Math. Appl., 71, 11, 2497-2512 (2016) · Zbl 1443.60052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.