×

Crepant resolutions and open strings. (English) Zbl 1428.14087

Consider a toric Calabi-Yau orbifold \(\mathfrak X\) with semi-projective moduli space, and let \(Y\to X\) be a crepant resolution of its coarse moduli space. Choose a Lagrangian boundary (Aganagic-Vafa brane) condition \(L\) on \(\mathfrak X\) and denote by \(L'\) its transform in \(Y\). Fix a \(\mathbb C^*\)-action with zero-dimensional fixed loci such that the resolution morphism is equivariant. Denote the equivariant parameter by \(\nu\). For \(\mathcal Z= \mathfrak X\) or \(Y\), let \(H(\mathcal Z)\) be the equivariant Chen-Ruan cohomology ring of \(\mathcal Z\), \(\mathcal H_\mathcal{Z}=H(\mathcal Z)((z^{-1}))\) be its Givental’s symplectic vector space of \(\mathcal Z\), and \(\Delta_\mathcal{Z}\) be the free module over \(\mathbb C[\nu]\) spanned by equivariant lifts of orbifold cohomology classes with degree less than or equal to 2.
The paper under review defines a family of elements of Givental space \(\mathbb F^{\text{disk}}_{L,\mathfrak X}\colon H(\mathfrak X)\to \mathcal H_\mathfrak{X}\) called the winding neutral disk potential. It encodes disk invariants of \((\mathfrak X, L)\) at any winding \(d\). \(\mathbb F^{\text{disk}}_{L',Y}\) is defined similarly. The paper then proposes the following version of open crepant resolution conjecture (OCRC):
There exists a \(\mathbb C((z^{-1}))\)-linear map of Givental spaces \(\mathbb O \colon \mathcal H_{\mathfrak X}\to \mathcal H_Y\) and analytic functions \(\mathfrak H_\mathfrak{X}\colon \Delta_\mathfrak{X} \to\mathbb C\), \(\mathfrak H_Y\colon \Delta_Y \to\mathbb C\) such that \(\mathfrak H^{1/z}_Y\; \mathbb F^{\text{disk}}_{L',Y}|_{\Delta_Y}=\mathfrak H^{1/z}_\mathfrak{X}\; \mathbb O \; \mathbb F^{\text{disk}}_{L,\mathfrak X}|_{\Delta_\mathfrak{X}}\) after analytic continuation of quantum cohomology parameters. Moreover, both \(\mathbb O\) and \(\mathfrak H\) are completely determined by the classical toric geometry of \(\mathfrak X\) and \(Y\). Furthermore, when \(\mathfrak X\) is a Hard Lefschetz Calabi-Yau orbifold, the OCRC comparison extends to all of \(H(\mathcal Z)\) and hence also allows proposing a comparison for potentials encoding higher genus invariants with arbitrary boundary conditions.
The main result of the paper under review proves OCRC conjecture above for the \(A_n\) orbifold \(\mathfrak X=[\mathbb C^2/\mathbb Z_{n+1}]\times \mathbb C\) any choice of Aganagic-Vafa brane.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds

References:

[1] D. Abramovich, T. Graber and A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337-1398.; Abramovich, D.; Graber, T.; Vistoli, A., Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math., 130, 5, 1337-1398 (2008) · Zbl 1193.14070
[2] M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Comm. Math. Phys. 254 (2005), 425-478.; Aganagic, M.; Klemm, A.; Mariño, M.; Vafa, C., The topological vertex, Comm. Math. Phys., 254, 425-478 (2005) · Zbl 1114.81076
[3] M. Aganagic, A. Klemm and C. Vafa, Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A57 (2002), 1-28.; Aganagic, M.; Klemm, A.; Vafa, C., Disk instantons, mirror symmetry and the duality web, Z. Naturforsch., A57, 1-28 (2002) · Zbl 1203.81153
[4] M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, preprint (2000), .; <element-citation publication-type=”other“> Aganagic, M.Vafa, C.Mirror symmetry, D-branes and counting holomorphic discsPreprint2000 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/hep-th/0012041
[5] M. Ballard, D. Favero and L. Katzarkov, Variation of geometric invariant theory quotients and derived categories, preprint (2012), .; <element-citation publication-type=”other“> Ballard, M.Favero, D.Katzarkov, L.Variation of geometric invariant theory quotients and derived categoriesPreprint2012 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1203.6643 · Zbl 1432.14015
[6] V. V. Batyrev and D. van Straten, Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties, Comm. Math. Phys. 168 (1995), no. 3, 493-533.; Batyrev, V. V.; van Straten, D., Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties, Comm. Math. Phys., 168, 3, 493-533 (1995) · Zbl 0843.14016
[7] L. A. Borisov and R. P. Horja, Mellin-Barnes integrals as Fourier-Mukai transforms, Adv. Math. 207 (2006), no. 2, 876-927.; Borisov, L. A.; Horja, R. P., Mellin-Barnes integrals as Fourier-Mukai transforms, Adv. Math., 207, 2, 876-927 (2006) · Zbl 1137.14314
[8] V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model, Comm. Math. Phys. 287 (2009), 117-178.; Bouchard, V.; Klemm, A.; Mariño, M.; Pasquetti, S., Remodeling the B-model, Comm. Math. Phys., 287, 117-178 (2009) · Zbl 1178.81214
[9] V. Bouchard, A. Klemm, M. Marino and S. Pasquetti, Topological open strings on orbifolds, Comm. Math. Phys. 296 (2010), 589-623.; Bouchard, V.; Klemm, A.; Marino, M.; Pasquetti, S., Topological open strings on orbifolds, Comm. Math. Phys., 296, 589-623 (2010) · Zbl 1203.14042
[10] A. Brini, A crepant resolution conjecture for open strings, talk at the BIRS Workshop on “New recursion formulae and integrability for Calabi-Yau manifolds”, preprint (2011).; Brini, A., A crepant resolution conjecture for open strings, talk at the BIRS Workshop on “New recursion formulae and integrability for Calabi-Yau manifolds”, Preprint (2011)
[11] A. Brini, Open topological strings and integrable hierarchies: Remodeling the A-model, Comm. Math. Phys. 312 (2012), 735-780.; Brini, A., Open topological strings and integrable hierarchies: Remodeling the A-model, Comm. Math. Phys., 312, 735-780 (2012) · Zbl 1276.14055
[12] A. Brini, G. Carlet, S. Romano and P. Rossi, Rational reductions of the 2D-Toda hierarchy and mirror symmetry, preprint (2014), ; to appear in J. Eur. Math. Soc. (JEMS).; <element-citation publication-type=”other“> Brini, A.Carlet, G.Romano, S.Rossi, P.Rational reductions of the 2D-Toda hierarchy and mirror symmetryPreprint2014 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1401.5725 · Zbl 1368.81139
[13] A. Brini and R. Cavalieri, Open orbifold Gromov-Witten invariants of [\mathbb{C}^3/\mathbb{Z}_n]: Localization and mirror symmetry, Selecta Math. (N.S.) 17 (2011), no. 4, 879-933.; Brini, A.; Cavalieri, R., Open orbifold Gromov-Witten invariants of [\mathbb{C}^3/\mathbb{Z}_n]: Localization and mirror symmetry, Selecta Math. (N.S.), 17, 4, 879-933 (2011) · Zbl 1236.14046
[14] A. Brini and R. Cavalieri, Crepant resolutions and open strings II, preprint (2014), .; <element-citation publication-type=”other“> Brini, A.Cavalieri, R.Crepant resolutions and open strings IIPreprint2014 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1407.2571
[15] A. Brini and A. Tanzini, Exact results for topological strings on resolved \(Y(p,q)\) singularities, Comm. Math. Phys. 289 (2009), 205-252.; Brini, A.; Tanzini, A., Exact results for topological strings on resolved \(Y(p,q)\) singularities, Comm. Math. Phys., 289, 205-252 (2009) · Zbl 1195.14057
[16] J. Bryan and A. Gholampour, Root systems and the quantum cohomology of ADE resolutions, Algebra Number Theory 2 (2008), no. 4, 369-390.; Bryan, J.; Gholampour, A., Root systems and the quantum cohomology of ADE resolutions, Algebra Number Theory, 2, 4, 369-390 (2008) · Zbl 1159.14028
[17] J. Bryan and T. Graber, The crepant resolution conjecture, Proc. Sympos. Pure Math. 80 (2009), 23-42.; Bryan, J.; Graber, T., The crepant resolution conjecture, Proc. Sympos. Pure Math., 80, 23-42 (2009) · Zbl 1198.14053
[18] R. Cavalieri and D. Ross, Open Gromov-Witten theory and the crepant resolution conjecture, preprint (2013), ; to appear in Michigan Math. J.; <element-citation publication-type=”other“> Cavalieri, R.Ross, D.Open Gromov-Witten theory and the crepant resolution conjecturePreprint2013 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1102.0717 · Zbl 1273.14111
[19] K. Chan, C.-H. Cho, S.-C. Lau and H.-H. Tseng, Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds, preprint (2012), .; <element-citation publication-type=”other“> Chan, K.Cho, C.-H.Lau, S.-C.Tseng, H.-H.Lagrangian Floer superpotentials and crepant resolutions for toric orbifoldsPreprint2012 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1208.5282
[20] K. Chan, C.-H. Cho, S.-C. Lau and H.-H. Tseng, Gross fibrations, SYZ mirror symmetry, and open Gromov-Witten invariants for toric Calabi-Yau orbifolds, preprint (2013), .; <element-citation publication-type=”other“> Chan, K.Cho, C.-H.Lau, S.-C.Tseng, H.-H.Gross fibrations, SYZ mirror symmetry, and open Gromov-Witten invariants for toric Calabi-Yau orbifoldsPreprint2013 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1306.0437 · Zbl 1344.53071
[21] K. Chan, S.-C. Lau, N. C. Leung and H.-H. Tseng, Open Gromov-Witten invariants and mirror maps for semi-Fano toric manifolds, preprint (2011), .; <element-citation publication-type=”other“> Chan, K.Lau, S.-C.Leung, N. C.Tseng, H.-H.Open Gromov-Witten invariants and mirror maps for semi-Fano toric manifoldsPreprint2011 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1112.0388
[22] W. Chen and Y. Ruan, Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics (Madison 2001), Contemp. Math. 310, American Mathematical Society, Providence (2002), 25-82.; Chen, W.; Ruan, Y., Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics, 25-82 (2002) · Zbl 1091.53058
[23] T. Coates, On the crepant resolution conjecture in the local case, Comm. Math. Phys. 287 (2009), no. 3, 1071-1108.; Coates, T., On the crepant resolution conjecture in the local case, Comm. Math. Phys., 287, 3, 1071-1108 (2009) · Zbl 1200.53081
[24] T. Coates, A. Corti, H. Iritani and H.-H. Tseng, Computing genus-zero twisted Gromov-Witten invariants, Duke Math. J. 147 (2009), no. 3, 377-438.; Coates, T.; Corti, A.; Iritani, H.; Tseng, H.-H., Computing genus-zero twisted Gromov-Witten invariants, Duke Math. J., 147, 3, 377-438 (2009) · Zbl 1176.14009
[25] T. Coates, A. Corti, H. Iritani and H.-H. Tseng, A mirror theorem for toric stacks, preprint (2013), .; <element-citation publication-type=”other“> Coates, T.Corti, A.Iritani, H.Tseng, H.-H.A mirror theorem for toric stacksPreprint2013 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1310.4163 · Zbl 1330.14093
[26] T. Coates and H. Iritani, On the convergence of Gromov-Witten potentials and Givental’s formula, preprint (2012), .; <element-citation publication-type=”other“> Coates, T.Iritani, H.On the convergence of Gromov-Witten potentials and Givental’s formulaPreprint2012 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1203.4193 · Zbl 1331.14053
[27] T. Coates, H. Iritani and Y. Jiang, in preparation.; Coates, T.; Iritani, H.; Jiang, Y., Miscellaneous
[28] T. Coates, H. Iritani and H.-H. Tseng, Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol. 13 (2009), no. 5, 2675-2744.; Coates, T.; Iritani, H.; Tseng, H.-H., Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol., 13, 5, 2675-2744 (2009) · Zbl 1184.53086
[29] T. Coates and Y. Ruan, Quantum cohomology and crepant resolutions: A conjecture, preprint (2013), ; to appear in Ann. Inst. Fourier (Grenoble).; <element-citation publication-type=”other“> Coates, T.Ruan, Y.Quantum cohomology and crepant resolutions: A conjecturePreprint2013 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/0710.5901 · Zbl 1275.53083
[30] D. A. Cox and S. Katz, Mirror symmetry and algebraic geometry, Math. Surveys Monogr. 68, American Mathematical Society, Providence 1999.; Cox, D. A.; Katz, S., Mirror symmetry and algebraic geometry (1999) · Zbl 0951.14026
[31] P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 5-89.; Deligne, P.; Mostow, G. D., Monodromy of hypergeometric functions and nonlattice integral monodromy, Publ. Math. Inst. Hautes Études Sci., 63, 5-89 (1986) · Zbl 0615.22008
[32] D.-E. Diaconescu and B. Florea, Localization and gluing of topological amplitudes, Comm. Math. Phys. 257 (2005), 119-149.; Diaconescu, D.-E.; Florea, B., Localization and gluing of topological amplitudes, Comm. Math. Phys., 257, 119-149 (2005) · Zbl 1097.14044
[33] R. Dijkgraaf, H. L. Verlinde and E. P. Verlinde, Topological strings in \(d<1\), Nuclear Phys. B 352 (1991), 59-86.; Dijkgraaf, R.; Verlinde, H. L.; Verlinde, E. P., Topological strings in \(d<1\), Nuclear Phys. B, 352, 59-86 (1991) · Zbl 0783.58088
[34] W. Donovan and E. Segal, Mixed braid group actions from deformations of surface singularities, preprint (2013), .; <element-citation publication-type=”other“> Donovan, W.Segal, E.Mixed braid group actions from deformations of surface singularitiesPreprint2013 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1310.7877 · Zbl 1327.14185
[35] B. Dubrovin, Hamiltonian formalism of Whitham type hierarchies and topological Landau-Ginsburg models, Comm. Math. Phys. 145 (1992), 195-207.; Dubrovin, B., Hamiltonian formalism of Whitham type hierarchies and topological Landau-Ginsburg models, Comm. Math. Phys., 145, 195-207 (1992) · Zbl 0753.58039
[36] B. Dubrovin, Geometry of 2D topological field theories, Integrable systems and quantum groups (Montecatini Terme 1993), Lecture Notes in Math. 1620, Springer, Berlin (1994), 120-348.; Dubrovin, B., Geometry of 2D topological field theories, Integrable systems and quantum groups, 120-348 (1994) · Zbl 0841.58065
[37] B. Dubrovin, Painlevé transcendents and two-dimensional topological field theory, The Painlevé property, CRM Ser. Math. Phys., Springer, New York (1998), 287-412.; Dubrovin, B., Painlevé transcendents and two-dimensional topological field theory, The Painlevé property, 287-412 (1998) · Zbl 1026.34095
[38] B. Dubrovin, On almost duality for Frobenius manifolds, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2 212, American Mathematical Society, Providence (2004), 75-132.; Dubrovin, B., On almost duality for Frobenius manifolds, Geometry, topology, and mathematical physics, 75-132 (2004) · Zbl 1063.53092
[39] H. Exton, Multiple hypergeometric functions and applications, Ellis Horwood, Chichester 1976.; Exton, H., Multiple hypergeometric functions and applications (1976) · Zbl 0337.33001
[40] B. Fang, C.-C. M. Liu and H.-H. Tseng, Open-closed Gromov-Witten invariants of 3-dimensional Calabi-Yau smooth toric DM stacks, preprint (2012), .; <element-citation publication-type=”other“> Fang, B.Liu, C.-C. M.Tseng, H.-H.Open-closed Gromov-Witten invariants of 3-dimensional Calabi-Yau smooth toric DM stacksPreprint2012 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1212.6073
[41] B. Fang, C.-C. M. Liu and Z. Zong, On the remodeling conjecture for toric Calabi-Yau 3-orbifolds, preprint (2016), .; <element-citation publication-type=”other“> Fang, B.Liu, C.-C. M.Zong, Z.On the remodeling conjecture for toric Calabi-Yau 3-orbifoldsPreprint2016 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1604.07123
[42] A. Givental, Equivariant Gromov-Witten invariants, Int. Math. Res. Not. IMRN 1996 (1996), no. 13, 613-663.; Givental, A., Equivariant Gromov-Witten invariants, Int. Math. Res. Not. IMRN, 1996, 13, 613-663 (1996) · Zbl 0881.55006
[43] A. Givental, A mirror theorem for toric complete intersections, Progr. Math. 160 (1998), 141-175.; Givental, A., A mirror theorem for toric complete intersections, Progr. Math., 160, 141-175 (1998) · Zbl 0936.14031
[44] A. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), no. 4, 551-568, 645.; Givental, A., Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J., 1, 4, 551-568 (2001) · Zbl 1008.53072
[45] A. Givental, Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. IMRN 2001 (2001), no. 23, 1265-1286.; Givental, A., Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. IMRN, 2001, 23, 1265-1286 (2001) · Zbl 1074.14532
[46] A. Givental, Symplectic geometry of Frobenius structures, Aspects Math. E36 (2004), 91-112.; Givental, A., Symplectic geometry of Frobenius structures, Aspects Math., E36, 91-112 (2004) · Zbl 1075.53091
[47] R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999), 1415-1443.; Gopakumar, R.; Vafa, C., On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys., 3, 1415-1443 (1999) · Zbl 0972.81135
[48] M. Herbst, K. Hori and D. Page, Phases of \(N=2\) theories in 1{+}1 dimensions with boundary, preprint (2008), .; <element-citation publication-type=”other“> Herbst, M.Hori, K.Page, D.Phases of \(N = 2\) theories in \(1 + 1\) dimensions with boundaryPreprint2008 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/0803.2045 · Zbl 1162.81033
[49] R. P. Horja, Hypergeometric functions and mirror symmetry in toric varieties, ProQuest LLC, Ann Arbor 1999; Ph.D. thesis, Duke University, 1999.; Horja, R. P., Hypergeometric functions and mirror symmetry in toric varieties (1999)
[50] H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), no. 3, 1016-1079.; Iritani, H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math., 222, 3, 1016-1079 (2009) · Zbl 1190.14054
[51] H. Iritani, Ruan’s conjecture and integral structures in quantum cohomology, New developments in algebraic geometry, integrable systems and mirror symmetry (Kyoto 2008), Adv. Stud. Pure Math., Mathematical Society Japan, Tokyo (2010), 111-166.; Iritani, H., Ruan’s conjecture and integral structures in quantum cohomology, New developments in algebraic geometry, integrable systems and mirror symmetry, 111-166 (2010) · Zbl 1231.14046
[52] T. J. Jarvis and T. Kimura, Orbifold quantum cohomology of the classifying space of a finite group, Orbifolds in mathematics and physics (Madison 2001), Contemp. Math. 310, American Mathematical Society, Providence (2002), 123-134.; Jarvis, T. J.; Kimura, T., Orbifold quantum cohomology of the classifying space of a finite group, Orbifolds in mathematics and physics, 123-134 (2002) · Zbl 1065.14069
[53] M. Kapovich and J. J. Millson, Quantization of bending deformations of polygons in \mathbb{E}^3, hypergeometric integrals and the Gassner representation, Canad. Math. Bull. 44 (2001), no. 1, 36-60.; Kapovich, M.; Millson, J. J., Quantization of bending deformations of polygons in \mathbb{E}^3, hypergeometric integrals and the Gassner representation, Canad. Math. Bull., 44, 1, 36-60 (2001) · Zbl 1008.53073
[54] S. H. Katz and C.-C. M. Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Geom. Topol. Monogr. 8 (2002), 1-47.; Katz, S. H.; Liu, C.-C. M., Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Geom. Topol. Monogr., 8, 1-47 (2002) · Zbl 1107.14302
[55] H. Ke and J. Zhou, Quantum McKay correspondence via gauged linear sigma model, in preparation.; Ke, H.; Zhou, J., Quantum McKay correspondence via gauged linear sigma model, Preprint
[56] M. Krawitz and Y. Shen, Landau-Ginzburg/Calabi-Yau correspondence of all genera for elliptic orbifold \mathbb{P}^1, preprint (2011), .; <element-citation publication-type=”other“> Krawitz, M.Shen, Y.Landau-Ginzburg/Calabi-Yau correspondence of all genera for elliptic orbifold \(\Bbb P^1\) Preprint2011 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1106.6270
[57] I. M. Krichever, The tau function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math. 47 (1994), 437-475.; Krichever, I. M., The tau function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math., 47, 437-475 (1994) · Zbl 0811.58064
[58] G. Lauricella, Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo 7 (1893), 111-158.; Lauricella, G., Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo, 7, 111-158 (1893) · JFM 25.0756.01
[59] Y. Lee and R. Pandharipande, Frobenius manifolds, Gromov-Witten theory, and Virasoro constraints. Part II, in preparation (2004), .; <element-citation publication-type=”other“> Lee, Y.Pandharipande, R.Frobenius manifolds, Gromov-Witten theory, and Virasoro constraints. Part IIPreprint2004 <ext-link ext-link-type=”uri“ xlink.href=”>https://www.math.utah.edu/ yplee/research/Part2.ps
[60] W. Lerche and P. Mayr, On \(N=1\) mirror symmetry for open type II strings, preprint (2001), .; <element-citation publication-type=”other“> Lerche, W.Mayr, P.On \(N = 1\) mirror symmetry for open type II stringsPreprint2001 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/hep-th/0111113
[61] J. Li, C.-C. M. Liu, K. Liu and J. Zhou, A mathematical theory of the topological vertex, Geom. Topol. 13 (2009), 527-621.; Li, J.; Liu, C.-C. M.; Liu, K.; Zhou, J., A mathematical theory of the topological vertex, Geom. Topol., 13, 527-621 (2009) · Zbl 1184.14084
[62] J. Li and Y. S. Song, Open string instantons and relative stable morphisms, Adv. Theor. Math. Phys. 5 (2002), 67-91.; Li, J.; Song, Y. S., Open string instantons and relative stable morphisms, Adv. Theor. Math. Phys., 5, 67-91 (2002) · Zbl 1015.14026
[63] M. Mariño and C. Vafa, Framed knots at large N, Orbifolds in mathematics and physics (Madison 2001), Contemp. Math. 310, American Mathematical Society, Providence (2002), 185-204.; Mariño, M.; Vafa, C., Framed knots at large N, Orbifolds in mathematics and physics, 185-204 (2002) · Zbl 1042.81071
[64] D. Maulik, A. Oblomkov, A. Okounkov and R. Pandharipande, Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math. 186 (2008), 1-45.; Maulik, D.; Oblomkov, A.; Okounkov, A.; Pandharipande, R., Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math., 186, 1-45 (2008) · Zbl 1232.14039
[65] K. Mimachi and T. Sasaki, Irreducibility and reducibility of Lauricella’s system of differential equations \(E_{\rm D}\) and the Jordan-Pochhammer differential equation E_{\rm JP}, Kyushu J. Math. 66 (2012), no. 1, 61-87.; Mimachi, K.; Sasaki, T., Irreducibility and reducibility of Lauricella’s system of differential equations \(E_{\rm D}\) and the Jordan-Pochhammer differential equation E_{\rm JP}, Kyushu J. Math., 66, 1, 61-87 (2012) · Zbl 1259.33025
[66] R. Pandharipande, J. Solomon and J. Walcher, Disk enumeration on the quintic 3-fold, J. Amer. Math. Soc. 21 (2008), no. 4, 1169-1209.; Pandharipande, R.; Solomon, J.; Walcher, J., Disk enumeration on the quintic 3-fold, J. Amer. Math. Soc., 21, 4, 1169-1209 (2008) · Zbl 1203.53086
[67] S. Romano, Frobenius structures on double Hurwitz spaces, preprint (2012), .; <element-citation publication-type=”other“> Romano, S.Frobenius structures on double Hurwitz spacesPreprint2012 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1210.2312
[68] S. Romano, Special Frobenius structures on Hurwitz spaces and applications, Ph.D. thesis in Mathematical Physics, SISSA, Trieste 2012.; Romano, S., Special Frobenius structures on Hurwitz spaces and applications (2012)
[69] D. Ross, Localization and gluing of orbifold amplitudes: The Gromov-Witten orbifold vertex, Trans. Amer. Math. Soc. 366 (2014), no. 3, 1587-1620.; Ross, D., Localization and gluing of orbifold amplitudes: The Gromov-Witten orbifold vertex, Trans. Amer. Math. Soc., 366, 3, 1587-1620 (2014) · Zbl 1469.53132
[70] Y. Ruan, The cohomology ring of crepant resolutions of orbifolds, Gromov-Witten theory of spin curves and orbifolds (San Francisco 2003), Contemp. Math. 403, American Mathematical Society, Providence (2006), 117-126.; Ruan, Y., The cohomology ring of crepant resolutions of orbifolds, Gromov-Witten theory of spin curves and orbifolds, 117-126 (2006) · Zbl 1105.14078
[71] K. Saito, Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 1231-1264.; Saito, K., Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci., 19, 3, 1231-1264 (1983) · Zbl 0539.58003
[72] E. Segal, Equivalence between GIT quotients of Landau-Ginzburg B-models, Comm. Math. Phys. 304 (2011), no. 2, 411-432.; Segal, E., Equivalence between GIT quotients of Landau-Ginzburg B-models, Comm. Math. Phys., 304, 2, 411-432 (2011) · Zbl 1216.81122
[73] P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37-108.; Seidel, P.; Thomas, R., Braid group actions on derived categories of coherent sheaves, Duke Math. J., 108, 1, 37-108 (2001) · Zbl 1092.14025
[74] J. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, preprint (2006), .; <element-citation publication-type=”other“> Solomon, J.Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditionsPreprint2006 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/math/0606429
[75] C. Teleman, The structure of 2D semi – simple field theories, Invent. Math. 188 (2012), no. 3, 525-588.; Teleman, C., The structure of 2D semi – simple field theories, Invent. Math., 188, 3, 525-588 (2012) · Zbl 1248.53074
[76] L. Toscano, Sui polinomi ipergeometrici a più variabili del tipo F_D di Lauricella, Matematiche (Catania) 27 (1973), 219-250.; Toscano, L., Sui polinomi ipergeometrici a più variabili del tipo F_D di Lauricella, Matematiche (Catania), 27, 219-250 (1973) · Zbl 0281.33009
[77] H.-H. Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), no. 1, 1-81.; Tseng, H.-H., Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol., 14, 1, 1-81 (2010) · Zbl 1178.14058
[78] V. A. Vassiliev, Applied Picard-Lefschetz theory, Math. Surveys Monogr. 97, American Mathematical Society, Providence 2002.; Vassiliev, V. A., Applied Picard-Lefschetz theory (2002) · Zbl 1039.32039
[79] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge University Press, Cambridge 1996.; Whittaker, E. T.; Watson, G. N., A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions (1996) · Zbl 0951.30002
[80] J. Zhou, Crepant resolution conjecture in all genera for type A singularities, preprint (2008), .; <element-citation publication-type=”other“> Zhou, J.Crepant resolution conjecture in all genera for type A singularitiesPreprint2008 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/0811.2023
[81] Z. Zong, Equivariant Gromov-Witten theory of gkm orbifolds, preprint (2016), .; <element-citation publication-type=”other“> Zong, Z.Equivariant Gromov-Witten theory of gkm orbifoldsPreprint2016 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1604.07270
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.