×

The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach. (English) Zbl 1402.35093

Summary: We study the Dirichlet problem for the stationary Schrödinger fractional Laplacian equation \((- \varDelta)^s u + V u = f\) posed in bounded domain \(\varOmega \subset \mathbb{R}^n\) with zero outside conditions. We consider general nonnegative potentials \(V \in L_{l o c}^1(\varOmega)\) and prove well-posedness of very weak solutions when the data are chosen in an optimal class of weighted integrable functions \(f\). Important properties of the solutions, such as its boundary behaviour, are derived. The case of super singular potentials that blow up near the boundary is given special consideration since it leads to so-called flat solutions. We comment on related literature.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35D30 Weak solutions to PDEs
35J67 Boundary values of solutions to elliptic equations and elliptic systems
35J75 Singular elliptic equations
35R11 Fractional partial differential equations

References:

[1] Abatangelo, N., Large \(S\)-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35, 12, 5555-5607, (2015) · Zbl 1333.31013
[2] Adams, R. A.; Fournier, J. F., (Sobolev spaces, vol. 140, (2003), Academic press) · Zbl 1098.46001
[3] Aizenman, M.; Simon, B., Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math., 35, 2, 209-273, (1982) · Zbl 0459.60069
[4] Bogdan, K.; Byczkowski, T.; Kulczycki, T.; Ryznar, M.; Song, R.; Vondraăcek, Z., (Potential Analysis of Stable Processes and its Extensions, Lecture Notes in Mathematics, vol. 1980, (2009), Springer-Verlag Berlin)
[5] Bonforte, M.; Figalli, A.; Vázquez, J. L., Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations, Calc. Var. Partial Differential Equations, 1-34, (2018) · Zbl 1392.35144
[6] Bonforte, M.; Figalli, A.; Vázquez, J. L., Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains, Anal. PDEs, 11, 4, 945-982, (2018) · Zbl 1443.35067
[7] Bonforte, M.; Sire, Y.; Vázquez, J. L., Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst. Ser. A, 35, 12, 5725-5767, (2015) · Zbl 1347.35129
[8] Bonforte, M.; Sire, Y.; Vázquez, J. L., Optimal existence and uniqueness theory for the fractional heat equation, Nonlinear Anal., 153, 142-168, (2017) · Zbl 1364.35416
[9] Bonforte, M.; Vázquez, J. L., Fractional nonlinear degenerate diffusion equations on bounded domains part I. existence, uniqueness and upper bounds, Nonlinear Anal., 131, 363-398, (2016) · Zbl 1328.35009
[10] H. Brézis, Une équation non linéaire avec conditions aux limites dans \(L^1\); H. Brézis, Une équation non linéaire avec conditions aux limites dans \(L^1\)
[11] Brezis, H., (Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, (2011), Springer New York) · Zbl 1220.46002
[12] Brézis, H.; Cazenave, T.; Martel, Y.; Ramiandrisoa, A., Blow up for \(u_t - \Delta u = g(u)\) revisited, Adv. Differential Equations, 1, 1, 73-90, (1996) · Zbl 0855.35063
[13] Cabré, X.; Martel, Y., Weak eigenfunctions for the linearization of extremal elliptic problems, J. Funct. Anal., 156, 1, 30-56, (1998) · Zbl 0908.35044
[14] Cabré, X.; Sire, Y., Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31, 1, 23-53, (2014) · Zbl 1286.35248
[15] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differential Equations, 32, 8, 1245-1260, (2007) · Zbl 1143.26002
[16] Caffarelli, L.; Silvestre, L., Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62, 5, 597-638, (2009) · Zbl 1170.45006
[17] Caffarelli, L.; Silvestre, L., The Evans-Krylov theorem for nonlocal fully nonlinear equations, Ann. of Math., 174, 2, 1163-1187, (2011) · Zbl 1232.49043
[18] Caffarelli, L.; Silvestre, L., Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200, 1, 59-88, (2011) · Zbl 1231.35284
[19] Caffarelli, L. A.; Sire, Y., On some pointwise inequalities involving nonlocal operators, (2017) · Zbl 1482.35017
[20] Caffarelli, L. A.; Stinga, P. R., Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 3, 767-807, (2016) · Zbl 1381.35211
[21] Chen, H.; Véron, L., Semilinear fractional elliptic equations involving measures, J. Differential Equations, 257, 5, 1457-1486, (2014) · Zbl 1290.35305
[22] Chen, Z.-Q.; Song, R., Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann, 312, 465-501, (1998) · Zbl 0918.60068
[23] Cooper, F.; Khare, A.; Sukhatme, U., Supersymmetry and quantum mechanics, Phys. Rep., 251, 5-6, 267-385, (1995)
[24] Crandall, M. G.; Liggett, T. M., Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93, 2, 265-298, (1971) · Zbl 0226.47038
[25] Crandall, M.; Pierre, M., Regularizing effects for \(u_t + A \varphi(u) = 0\) in \(L^1\), J. Funct. Anal., 45, 2, 194-212, (1982) · Zbl 0483.35076
[26] Di Nezza G. Palatucci, E.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573, (2012) · Zbl 1252.46023
[27] J.I. Díaz, On the ambiguous treatment of the fractional quasi-relativistic Schrödinger equation for the infinite-well potential and an alternative via singular potentials, Main results presented in the Conference Nonlinear Partial Differential Equations and Mathematical Analysis, A workshop in the honor of Jean Michel Rakotoson for his 60th birthday December 18-19, 2017, Madrid, Spain (in preparation).; J.I. Díaz, On the ambiguous treatment of the fractional quasi-relativistic Schrödinger equation for the infinite-well potential and an alternative via singular potentials, Main results presented in the Conference Nonlinear Partial Differential Equations and Mathematical Analysis, A workshop in the honor of Jean Michel Rakotoson for his 60th birthday December 18-19, 2017, Madrid, Spain (in preparation).
[28] Díaz, J. I., On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via flat solutions: the one-dimensional case, Interfaces Free Bound., 17, 3, 333-351, (2015) · Zbl 1328.81101
[29] Díaz, J. I., On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via singular potentials: the multi-dimensional case, SeMA J., 74, 3, 255-278, (2017), See also the Correction and Addendum to this article, to appear in SeMA Journal, Volume 75 (2018) · Zbl 1390.35298
[30] Díaz, J. I.; Gómez-Castro, D.; Rakotoson, J.-M., Existence and uniqueness of solutions of Schrödinger type stationary equations with very singular potentials without prescribing boundary conditions and some applications, Differ. Equ. Appl., 10, 1, 47-74, (2018) · Zbl 1398.35085
[31] Díaz, J. I.; Gómez-Castro, D.; Rakotoson, J.-M.; Temam, R., Linear diffusion with singular absorption potential and/or unbounded convective flow: the weighted space approach, Discrete Contin. Dyn. Syst., 38, 2, 509-546, (2018) · Zbl 1374.35178
[32] Díaz, J. I.; Morel, J.-M.; Oswald, L., An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations, 12, 12, 1333-1345, (1987) · Zbl 0634.35031
[33] Díaz, J. I.; Rakotoson, J. M., On the differentiability of very weak solutions with right hand side data integrable with respect to the distance to the boundary, J. Funct. Anal., 257, 3, 807-831, (2009) · Zbl 1173.35043
[34] Díaz, J. I.; Rakotoson, J. M., On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary, Discrete Contin. Dyn. Syst., 27, 3, 1037-1058, (2010) · Zbl 1198.35095
[35] Eilertsen, S., On weighted positivity and the Wiener regularity of a boundary point for the fractional Laplacian, (Arkiv for Matematik, (2000)) · Zbl 1046.34097
[36] Fall, M. M., Semilinear elliptic equations for the fractional Laplacian with Hardy potential, (2012)
[37] M.M. Fall, Regularity estimates for nonlocal Schrödinger equations, 2017. arXiv:1711.02206v2; M.M. Fall, Regularity estimates for nonlocal Schrödinger equations, 2017. arXiv:1711.02206v2
[38] Fall, M. M.; Felli, V., Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst. Ser. A, 35, 12, 5827-5867, (2015) · Zbl 1336.35356
[39] Felmer, P.; Quaas, A., Boundary blow up solutions for fractional elliptic equations, Asymptot. Anal., 78, 3, 123-144, (2012) · Zbl 1260.35242
[40] Fiorenza, A.; Sbordone, C., Existence and uniqueness results for solutions of nonlinear equations with right hand side in \(L^1\), Studia Math., 3, 127, 223-231, (1998) · Zbl 0891.35039
[41] Frank, R. L.; Lieb, E. H.; Seiringer, R., Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21, 4, 925-950, (2007) · Zbl 1202.35146
[42] Frazier, M. W.; Verbitsky, I. E., Existence of the gauge for fractional Laplacian Schrödinger operators, (2018)
[43] Gamow, G., Zur quantentheorie des atomkerns, Z. Für Phys., 54, 5-6, 445-448, (1929) · JFM 55.0552.02
[44] Grubb, G., Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu\)-transmission pseudodifferential operators, Adv. Math., 268, 478-528, (2015) · Zbl 1318.47064
[45] Herbst, I. W., Spectral theory of the operator \((p^2 + m^2)^{1 / 2} - Z e^2 r\), Comm. Math. Phys., 53, 3, 285-294, (1977) · Zbl 0375.35047
[46] Ihnatsyeva, L.; Lehrbäck, J.; Tuominen, H.; Vähäkangas, A. V., Fractional Hardy inequalities and visibility of the boundary, Studia Math., 224, 1, 47-80, (2014) · Zbl 1325.46040
[47] Kaleta, K.; Kwaśnicki, M.; Małecki, J., One-dimensional quasi-relativistic particle in the box, Rev. Math. Phys., 25, 08, 1350014, (2013) · Zbl 1278.81068
[48] Karch, G., (Nonlinear Evolution Equations with Anomalous Diffusion, Jindrich Nec̆as Center for Mathematical Modeling Lecture Notes, (2010)), 25-69
[49] Kufner, A., Weighted Sobolev spaces, (1980), John Wiley & Sons New York · Zbl 0455.46034
[50] Kulczycki, T., Properties of Green function of symmetric stable processes, Probab. Math. Statist., 17, 2, Acta Univ. Wratislav. No. 2029, 339-364, (1997) · Zbl 0903.60063
[51] Kuusi, T.; Mingione, G.; Sire, Y., Nonlocal equations with measure data, Comm. Math. Phys., 337, 3, 1317-1368, (2015) · Zbl 1323.45007
[52] Landkof, N. S., Foundations of modern potential theory, vol. 180, (1972), Springer New York · Zbl 0253.31001
[53] Leoni, G., (A First Course in Sobolev Spaces, Graduate Studies in Mathematics, vol. 105, (1967), American Mathematical Society Providence, Rhode Island)
[54] Lions, J. L.; Magenes, E., (Non-Homogeneous Boundary Value Problems and Applications: vol. 1, Die Grundlehren der mathematischen Wissenschaften, vol. 181, (1972), Springer-Verlag Berlin) · Zbl 0227.35001
[55] Marcus, M.; Véron, L., Nonlinear second order elliptic equations involving measures, vol. 22, (2013), De Gruyter
[56] Molica Bisci, G.; Radulescu, V. D.; Servadei, R., (Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, vol. 162, (2016), Cambridge University Press Cambridge) · Zbl 1356.49003
[57] Mott, N. F., An outline of wave mechanics, J. Phys. Chem., (1933) · JFM 56.1289.04
[58] Musina, R.; Nazarov, A. I., On fractional Laplacians, Comm. Partial Differential Equations, 39, 9, 1780-1790, (2014) · Zbl 1304.47061
[59] Orsina, L.; Ponce, A. C., Hopf potentials for schroedinger operators, (2017)
[60] de Pablo, A.; Quirós, F.; Rodríguez, A.; Vázquez, J. L., A fractional porous medium equation, Adv. Math., 226, 2, 1378-1409, (2011) · Zbl 1208.26016
[61] de Pablo, A.; Quirós, F.; Rodríguez, A.; Vázquez, J. L., A general fractional porous medium equation, Comm. Pure Appl. Math., 65, 9, 1242-1284, (2012) · Zbl 1248.35220
[62] Pöchl, G.; Teller, E., Bemerkungen zur quantenmechanik des anharmonischen oszillators, Z. Für Phys., 83, 3-4, 143-151, (1933) · Zbl 0007.13603
[63] Ponce, A., Elliptic PDEs, measures and capacities, (oct 2016), European Mathematical Society Publishing House Zuerich, Switzerland · Zbl 1357.35003
[64] J.M. Rakotoson, Personal communication to the authors, 2018.; J.M. Rakotoson, Personal communication to the authors, 2018.
[65] Rakotoson, J. M., New Hardy inequalities and behaviour of linear elliptic equations, J. Funct. Anal., 263, 9, 2893-2920, (2012) · Zbl 1257.35008
[66] Ros-Oton, X., Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., 60, 3-26, (2016) · Zbl 1337.47112
[67] Ros-Oton, X.; Serra, J., The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101, 3, 275-302, (2014) · Zbl 1285.35020
[68] Ros-Oton, X.; Serra, J., Boundary regularity for fully nonlinear integro-differential equations, Duke Math. J., 165, 11, 2079-2154, (2016) · Zbl 1351.35245
[69] Servadei, R.; Valdinoci, E., On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144, 4, 831-855, (2014) · Zbl 1304.35752
[70] Stein, E. M., Singular integrals and differentiability properties of functions, (2016), Princeton university press
[71] Stein, E. M.; Weiss, G. L., Introduction to Fourier analysis on Euclidean spaces, (1975), Princeton university Press
[72] Tartar, L., (An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, vol. 3, (2007), Springer Berlin) · Zbl 1126.46001
[73] Vázquez, J. L., Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type, J. Eur. Math. Soc., 16, 4, 769-803, (2014) · Zbl 1297.35279
[74] Vázquez, J. L., The mathematical theories of diffusion: nonlinear and fractional diffusion, (Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Lecture Notes in Math., vol. 2186, (2017), Springer Cham), 205-278 · Zbl 1492.35151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.