×

Degenerate Kirchhoff-type diffusion problems involving the fractional \(p\)-Laplacian. (English) Zbl 1394.35563

Summary: In this paper we study the existence of a global solution for a diffusion problem of Kirchhoff type driven by a nonlocal integro-differential operator. As a particular case, we consider the following parabolic equation involving the fractional \(p\)-Laplacian: \[ \begin{cases} \partial_t u + [u]_{s,p}^{(\lambda - 1) p}(-\Delta)_p^s u = |u|^{q-2}u,\quad & \text{in}\; \Omega \times \mathbb{R}^+\text{,}\quad \partial_t u = \partial u/\partial t\text{,}\\ u(x,0) = u_0(x)\text{,}\quad & \text{in}\; \Omega \text{,} \\ u(x,t)=0\text{,}\quad & \text{in}\; (\mathbb{R}^N \setminus \Omega) \times \mathbb{R}_0^+\text{,}\end{cases} \] where \([u]_{s,p}\) is the Gagliardo \(p\)-seminorm of \(u\), \(\Omega \subset \mathbb{R}^N\) is a bounded domain with Lipschitz boundary \(\partial \Omega\), \(p<q<Np/(N-sp)\) with \(1<p<N/s\) and \(s\in (0,1)\), \(1 \leq \lambda < N/(N-sp)\), \((-\Delta)_p^s\) is the fractional \(p\)-Laplacian. Under some appropriate assumptions, we obtain the existence of a global solution for the problem above by the Galerkin method and potential well theory. It is worth pointing out that the main result covers the degenerate case, that is the coefficient of \((-\Delta)_p^s\) can vanish at zero.

MSC:

35R11 Fractional partial differential equations
35K20 Initial-boundary value problems for second-order parabolic equations
Full Text: DOI

References:

[1] Sattinger, D. H., On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30, 147-172 (1968) · Zbl 0159.39102
[2] Esquivel-Avila, J. A., A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations, Nonlinear Anal., 52, 1111-1127 (2003) · Zbl 1023.35076
[3] Ikehata, R.; Suzuki, T., Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26, 475-491 (1996) · Zbl 0873.35010
[4] Liu, Y. C., On Potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations, 192, 155-169 (2003) · Zbl 1024.35078
[5] Liu, Y. C.; Zhao, J. S., Nonlinear parabolic equations with critical initial conditions \(J(u_0) = d\) or \(I(u_0) = 0\), Nonlinear Anal., 58, 873-883 (2004) · Zbl 1059.35064
[6] Liu, Y. C.; Zhao, J. S., On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64, 2665-2687 (2006) · Zbl 1096.35089
[7] Liu, Y. C.; Xu, R., Potential well method for Cauchy problem of generalized double dispersion equations, J. Math. Anal. Appl., 338, 2, 1169-1187 (2008) · Zbl 1140.35011
[8] Tsutsumi, M., Existence and nonexistence of global solutions of nonlinear parabolic equations, Publ. Res. Inst. Math. Sci., 8, 211-229 (1972/1973) · Zbl 0248.35074
[9] Xu, R.; Liu, Y. C., Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations, Nonlinear Anal., 359, 2, 739-751 (2009) · Zbl 1176.35119
[10] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 1245-1260 (2007) · Zbl 1143.26002
[11] Cabré, X.; Tan, J. G., Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224, 2052-2093 (2010) · Zbl 1198.35286
[12] Molica Bisci, G.; Rădulescu, V., Ground state solutions of scalar field fractional for Schrödinger equations, Calc. Var. Partial Differential Equations, 54, 2985-3008 (2015) · Zbl 1330.35495
[13] Servadei, R.; Valdinoci, E., Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389, 887-898 (2012) · Zbl 1234.35291
[14] Servadei, R.; Valdinoci, E., The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367, 67-102 (2015) · Zbl 1323.35202
[15] Tan, J. G., The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 42, 21-41 (2011) · Zbl 1248.35078
[16] Di Nezza, E.; Palatucci, G.; Valdinaci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023
[17] Franzina, G.; Palatucci, G., Fractional p-eigenvalues, Riv. Mat. Univ. Parma., 5, 373-386 (2014) · Zbl 1327.35286
[18] Iannizzotto, A.; Liu, S.; Perera, K.; Squassina, M., Existence results for fractional \(p\)-Laplacian problems via Morse theory, Adv. Calc. Var., 9, 101-125 (2016) · Zbl 1515.35318
[19] Xiang, M. Q.; Zhang, B. L.; Rădulescu, V., Existence of solutions for perturbed fractional \(p\)-Laplacian equations, J. Differential Equations, 260, 1392-1413 (2016) · Zbl 1332.35387
[20] Fife, P., Some nonclassical trends in parabolic and parabolic-like evolutions, (Trends in Nonlinear Analysis (2003), Springer: Springer Berlin), 153-191 · Zbl 1072.35005
[21] Gobbino, M., Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Methods Appl. Sci., 22, 375-388 (1999) · Zbl 0922.35079
[22] Kirchhoff, G., Vorlesungen uber Mechanik (1883), Teubner: Teubner Leipzig · JFM 08.0542.01
[23] Carrier, G. F., On the nonlinear vibration problem of the elastic string, Quart. Appl. Math., 3, 157-165 (1945) · Zbl 0063.00715
[24] Carrier, G. F., A note on the vibrating string, Quart. Appl. Math., 7, 97-101 (1949) · Zbl 0033.03003
[25] Autuori, G.; Pucci, P.; Salvatori, M. C., Global nonexistence for nonlinear Kirchhoff systerm, Arch. Ration. Mech. Anal., 196, 489-516 (2010) · Zbl 1201.35138
[26] Fiscella, A.; Valdinoci, E., A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94, 156-170 (2014) · Zbl 1283.35156
[27] Pucci, P.; Saldi, S., Critical stationary Kirchhoff equations in \(R^N\) involving nonlocal operators, Rev. Mat. Iberoam., 32, 1, 1-22 (2016) · Zbl 1405.35045
[28] Xiang, M. Q.; Zhang, B. L.; Ferrara, M., Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 424, 1021-1041 (2015) · Zbl 1317.35286
[29] D’Ancona, P.; Spagnolo, S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108, 247-262 (1992) · Zbl 0785.35067
[30] Autuori, G.; Fiscella, A.; Pucci, P., Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125, 699-714 (2015) · Zbl 1323.35015
[31] Mingqi, X.; Molica Bisci, G.; Tian, G. H.; Zhang, B. L., Infinitely many solutions for the stationary Kirchhoff problems involving the fractional \(p\)-Laplacian, Nonlinearity, 29, 357-374 (2016) · Zbl 1334.35406
[32] Pucci, P.; Xiang, M. Q.; Zhang, B. L., Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations, Adv. Nonlinear Anal., 5, 27-55 (2016) · Zbl 1334.35395
[33] Xiang, M. Q.; Zhang, B. L.; Ferrara, M., Multiplicity results for the nonhomogeneous fractional \(p\)-Kirchhoff equations with concave-convex nonlinearities, Proc. R. Soc. A, 471, 14 (2015) · Zbl 1371.35332
[34] Pucci, P.; Xiang, M. Q.; Zhang, B. L., A diffusion problem of Kirchhoff type involving the nonlocal fractional \(p\)-Laplacian, Discrete Contin. Dyn. Syst. (2017), in press · Zbl 1360.35312
[35] Xiang, M. Q.; Zhang, B. L.; Qiu, H., Existence of solutions for a critical fractional Kirchhoff type problem in \(R^N\), Sci. China, Ser. A Math. (2017), in press
[36] Xiang, M. Q.; Zhang, B. L.; Raˇdulescu, V., Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional \(p\)-Laplacian, Nonlinearity, 29, 3186-3205 (2016) · Zbl 1349.35413
[37] Xiang, M. Q.; Zhang, B. L., Degenerate Kirchhoff problems involving the fracrional \(p\)-Laplacian without the (AR) condition, Complex Var. Elliptic Equ., 60, 9, 1-11 (2015)
[38] Cockburn, B.; Shu, C. W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1997) · Zbl 0927.65118
[39] Fu, Y. Q.; Pan, N., Existence of solutions for nonlinear parabolic problems with \(p(x)\)-growth, J. Math. Anal. Appl., 362, 2, 313-326 (2010) · Zbl 1182.35144
[40] Fiscella, A.; Servadei, R.; Valdinoci, E., Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40, 235-253 (2015) · Zbl 1346.46025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.