×

Novel operational matrices-based finite difference/spectral algorithm for a class of time-fractional Burger equation in multidimensions. (English) Zbl 1498.65177

Summary: In this work, an innovative computational scheme is developed to compute stable solutions of time-fractional coupled viscous Burger’s equation in multi-dimensions. To discretize the problem, the temporal derivative is approximated through a forward difference scheme whereas the spatial derivatives are approximated assisted by novel operational matrices that have been constructed via shifted Gegenbauer wavelets (SGWs). The piecewise functions are utilized to construct the operational matrices of multi-dimensional SGWs vectors although related theorems are offered to authenticate the scheme mathematically. The proposed computational algorithm converts the model understudy to a system of linear algebraic equations that are easier to tackle. To validate the accuracy, credibility, and reliability of the present method, the time-fractional viscous Burger’s models are considered in one, two, and three dimensions. An inclusive comparative study is reported which demonstrates that the proposed computational scheme is effective, accurate, and well-matched to find the numerical solutions of the aforementioned problems. Convergence, error bound, and stability of the suggested method is investigated theoretically and numerically.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Oldham, K.; Spanier, J., The fractional calculus theory and applications of differentiation and integration to arbitrary order (1974), Elsevier · Zbl 0292.26011
[2] Miller K.S., Ross B. An introduction to the fractional calculus and fractional differential equations. 1993. · Zbl 0789.26002
[3] Murio, D. A., Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP, Inverse Prob Sci Eng, 17, 229-243 (2009) · Zbl 1159.65313
[4] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional integrals and derivatives: Gordon and Breach science publishers (1993), Yverdon Yverdon-les-Bains: Yverdon Yverdon-les-Bains Switzerland · Zbl 0818.26003
[5] Agarwal, R.; Belmekki, M.; Benchohra, M., A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv Differ Eq, 2009, Article 981728 pp. (2009) · Zbl 1182.34103
[6] Jumarie, G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput Math Appl, 51, 1367-1376 (2006) · Zbl 1137.65001
[7] Baleanu, D.; Agrawal, O. P., Fractional Hamilton formalism within Caputo’s derivative, Czech J Phys, 56, 1087-1092 (2006) · Zbl 1111.37304
[8] Agrawal, O. P., Fractional variational calculus in terms of Riesz fractional derivatives, J Phys A, 40, 6287 (2007) · Zbl 1125.26007
[9] Atangana, A.; Koca, I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons Fractals, 89, 447-454 (2016) · Zbl 1360.34150
[10] Losada, J.; Nieto, J. J., Properties of a new fractional derivative without singular kernel, Progr Fract Differ Appl, 1, 87-92 (2015)
[11] Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, J Comput Appl Math, 264, 65-70 (2014) · Zbl 1297.26013
[12] Korkmaz, A., Explicit exact solutions to some one-dimensional conformable time fractional equations, Waves Random Complex Medium, 29, 124-137 (2019) · Zbl 07583397
[13] Atangana, A.; Gómez-Aguilar, J., Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu, Numer Methods Part Differ Eq, 34, 1502-1523 (2018) · Zbl 1417.65113
[14] Abro, K. A.; Memon, A. A.; Uqaili, MA., A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives, Eur Phys J Plus, 133, 1-9 (2018)
[15] Abro, K. A.; Atangana, A., Role of non-integer and integer order differentiations on the relaxation phenomena of viscoelastic fluid, Phys Scr, 95, Article 035228 pp. (2020)
[16] Abro, K. A.; Atangana, A., A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal-fractional differentiations, Eur Phys J Plus, 135, 226 (2020)
[17] Abro, K. A.; Siyal, A.; Atangana, A., Thermal stratification of rotational second-grade fluid through fractional differential operators, J Therm Anal Calorim, 1-10 (2020)
[18] Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y., A new collection of real world applications of fractional calculus in science and engineering, Commun Nonlinear Sci Numer Simul, 64, 213-231 (2018) · Zbl 1509.26005
[19] Sierociuk, D.; Dzieliński, A.; Sarwas, G.; Petras, I.; Podlubny, I.; Skovranek, T., Modelling heat transfer in heterogeneous media using fractional calculus, Philosoph Trans R Soc A, 371 (2013), 20120146 · Zbl 1382.80004
[20] Oliveira, E. C.d.; Machado, J., A review of definitions for fractional derivatives and integral, Math Probl Eng (2014), Article ID 238459 · Zbl 1407.26013
[21] Bateman, H., Some recent researches on the motion of fluids, Mon Weather Rev, 43, 163-170 (1915)
[22] Burgers, JM., A mathematical model illustrating the theory of turbulence, Advances in applied mechanics, 171-199 (1948), Elsevier
[23] Adomian, G., The diffusion-Brusselator equation, Comput Math Appl, 29, 1-3 (1995) · Zbl 0827.35056
[24] Logan, J. D., An introduction to nonlinear partial differential equations (2008), John Wiley & Sons · Zbl 1176.35001
[25] Debnath, L., Nonlinear partial differential equations for scientists and engineers (2011), Springer Science & Business Media
[26] Alhendi, F. A.; Alderremy, A. A., Numerical solutions of three-dimensional coupled Burgers’ equations by using some numerical methods, J Appl Math Phys, 4, 2011 (2016)
[27] Srivastava, V. K.; Ashutosh, M. T.; Tamsir, M., Generating exact solution of threedimensional coupled unsteady nonlinear generalized viscous Burgers’ equations, Int J Math Sci, 5, 1-13 (2013)
[28] Shukla, H.; Tamsir, M.; Srivastava, V. K.; Rashidi, MM., Modified cubic B-spline differential quadrature method for numerical solution of three-dimensional coupled viscous Burger equation, Mod Phys Lett B, 30, Article 1650110 pp. (2016)
[29] Sari, M.; Gürarslan, G., A sixth-order compact finite difference scheme to the numerical solutions of Burgers’ equation, Appl Math Comput, 208, 475-483 (2009) · Zbl 1159.65343
[30] Mittal, R.; Jiwari, R., A differential quadrature method for numerical solutions of Burgers’-type equations, Int J Numer Methods Heat Fluid Flow, 22, 880-895 (2012) · Zbl 1357.65220
[31] Cao, W.; Xu, Q.; Zheng, Z., Solution of two-dimensional time-fractional Burgers equation with high and low Reynolds numbers, Adv Differ Eq, 2017, 338 (2017) · Zbl 1444.35145
[32] Chen, Y.; An, H-L., Numerical solutions of coupled Burgers equations with time-and space-fractional derivatives, Appl Math Comput, 200, 87-95 (2008) · Zbl 1143.65102
[33] Bahadır, AR., A fully implicit finite-difference scheme for two-dimensional Burgers’ equations, Appl Math Comput, 137, 131-137 (2003) · Zbl 1027.65111
[34] Zhu, H.; Shu, H.; Ding, M., Numerical solutions of two-dimensional Burgers’ equations by discrete Adomian decomposition method, Comput Math Appl, 60, 840-848 (2010) · Zbl 1201.65190
[35] Öziş, T.; Aksan, E.; Özdeş, A., A finite element approach for solution of Burgers’ equation, Appl Math Comput, 139, 417-428 (2003) · Zbl 1028.65106
[36] Dağ, I.; Irk, D.; Saka, B., A numerical solution of the Burgers’ equation using cubic B-splines, Appl Math Comput, 163, 199-211 (2005) · Zbl 1060.65652
[37] Fletcher, CA., Generating exact solutions of the two-dimensional Burgers’ equations, Int J Numer Methods Fluids, 3, 213-216 (1983) · Zbl 0563.76082
[38] Danfu, H.; Xufeng, S., Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration, Appl Math Comput, 194, 460-466 (2007) · Zbl 1193.65216
[39] Secer, A.; Ozdemir, N., Modified laguerre wavelet based galerkin method for fractional and fractional-order delay differential equations, Therm Sci, 23 (2019)
[40] Oruç, Ö.; Esen, A.; Bulut, F., A Haar wavelet approximation for two-dimensional time fractional reaction-subdiffusion equation, Eng Comput, 35, 75-86 (2019)
[41] Rahimkhani, P.; Ordokhani, Y., A numerical scheme based on Bernoulli wavelets and collocation method for solving fractional partial differential equations with Dirichlet boundary conditions, Numer Methods Part Differ Eq, 35, 34-59 (2019) · Zbl 1415.65237
[42] Usman, M.; Mohyud-Din, S. T., Traveling wave solutions of 7 th order Kaup Kuperschmidt and Lax equations of fractional-order, Int J Adv Appl Math Mech, 1, 17-34 (2013) · Zbl 1360.35037
[43] Rahimkhani, P.; Ordokhani, Y.; Babolian, E., Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer Algorithms, 77, 1283-1305 (2018) · Zbl 1402.65061
[44] Heydari, M.; Hooshmandasl, M.; Cattani, C., A new operational matrix of fractional order integration for the Chebyshev wavelets and its application for nonlinear fractional Van der Pol oscillator equation, Proc-Math Sci, 128, 1-26 (2018) · Zbl 06877178
[45] Hamid, M.; Usman, M.; Zubair, T.; Haq, R. U.; Shafee, A., An efficient analysis for N-soliton, Lump and lump-kink solutions of time-fractional (2+ 1)-Kadomtsev-Petviashvili equation, Physica A, 528, Article 121320 pp. (2019) · Zbl 07568469
[46] Izadkhah, M. M.; Saberi-Nadjafi, J., Gegenbauer spectral method for time-fractional convection-diffusion equations with variable coefficients, Math Methods Appl Sci, 38, 3183-3194 (2015) · Zbl 1329.35334
[47] Hamid, M.; Usman, M.; Wang, W.; Tian, Z., Hybrid fully spectral linearized scheme for time-fractional evolutionary equations, Math Methods Appl Sci (2020)
[48] Usman, M.; Hamid, M.; Zubair, T.; Haq, R. U.; Wang, W., Operational-matrix-based algorithm for differential equations of fractional order with Dirichlet boundary conditions, Eur Phys J Plus, 134, 279 (2019)
[49] Usman, M.; Hamid, M.; Haq, R. U.; Wang, W., An efficient algorithm based on Gegenbauer wavelets for the solutions of variable-order fractional differential equations, Eur Phys J Plus, 133, 327 (2018)
[50] Rehman, M.; Saeed, U., Gegenbauer wavelets operational matrix method for fractional differential equations, J Korean Math Soc, 52, 1069-1096 (2015) · Zbl 1325.65103
[51] Usman, M.; Hamid, M.; Khalid, M. S.U.; Haq, R. U.; Liu, M., A robust scheme based on novel-operational matrices for some classes of time-fractional nonlinear problems arising in mechanics and mathematical physics, Numer Methods Part Differ Eq, 36, 1566-1600 (2020) · Zbl 07777661
[52] Usman, M.; Hamid, M.; Zubair, T.; Haq, R. U.; Wang, W.; Liu, M., Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials, Appl Math Comput, 372, Article 124985 pp. (2020) · Zbl 1433.65152
[53] Yousefi, SA., Legendre wavelets method for solving differential equations of Lane-Emden type, Appl Math Comput, 181, 1417-1422 (2006) · Zbl 1105.65080
[54] Hsiao, C.-. H.; Wang, W-J., Haar wavelet approach to nonlinear stiff systems, Math Comput Simul, 57, 347-353 (2001) · Zbl 0986.65062
[55] Mittal, R.; Kumar, S., Numerical study of Fisher’s equation by wavelet Galerkin method, Int J Comput Math, 83, 287-298 (2006) · Zbl 1104.65319
[56] Hamid, M.; Usman, M.; Haq, R. U.; Tian, Z.; Wang, W., Linearized stable spectral method to analyze two-dimensional nonlinear evolutionary and reaction-diffusion models, Numer Methods Part Differ Eq (2020)
[57] Saeed, U., CAS Picard method for fractional nonlinear differential equation, Appl Math Comput, 307, 102-112 (2017) · Zbl 1411.65102
[58] Yin, F.; Tian, T.; Song, J.; Zhu, M., Spectral methods using Legendre wavelets for nonlinear Klein∖ Sine-Gordon equations, J Comput Appl Math, 275, 321-334 (2015) · Zbl 1334.65175
[59] Hosseininia, M.; Heydari, M.; Avazzadeh, Z.; Ghaini, FM., Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection-diffusion equation with variable coefficients, Int J Nonlinear Sci Numer Simul, 19, 793-802 (2018) · Zbl 1461.65247
[60] Hosseininia, M.; Heydari, M.; Roohi, R.; Avazzadeh, Z., A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation, J Comput Phys (2019) · Zbl 1452.65196
[61] Hosseininia, M.; Heydari, M.; Ghaini, F. M.; Avazzadeh, Z., A wavelet method to solve nonlinear variable-order time fractional 2D Klein-Gordon equation, Comput Math Appl (2019) · Zbl 1443.65449
[62] Hamid, M.; Usman, M.; Wang, W.; Tian, Z., A stable computational approach to analyze semi-relativistic behavior of fractional evolutionary problems, Numer Methods Part Differ Eq (2020)
[63] Usman, M.; Mohyud-Din, S. T., Physicists Hermite wavelet method for singular differential equations, Int J Adv Appl Math Mech, 1, 16-29 (2013) · Zbl 1360.34052
[64] Usman, M.; Zubair, T.; Hamid, M.; Haq, R. U.; Wang, W., Wavelets solution of MHD 3-D fluid flow in the presence of slip and thermal radiation effects, Phys Fluids, 30, Article 023104 pp. (2018)
[65] Ray, S. S.; Gupta, A., A numerical investigation of time-fractional modified Fornberg-Whitham equation for analyzing the behavior of water waves, Appl Math Comput, 266, 135-148 (2015) · Zbl 1410.76034
[66] Ray, S. S.; Gupta, A., Numerical solution of fractional partial differential equation of parabolic type with Dirichlet boundary conditions using two-dimensional Legendre wavelets method, J Comput Nonlinear Dyn, 11, Article 011012 pp. (2016)
[67] Rubin S.G., Graves Jr R.A.. A cubic spline approximation for problems in fluid mechanics. 1975.
[68] Abbasbandy, S.; Darvishi, M., A numerical solution of Burgers’ equation by modified Adomian method, Appl Math Comput, 163, 1265-1272 (2005) · Zbl 1060.65649
[69] Kutluay, S.; Bahadir, A.; Özdeş, A., Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, J Comput Appl Math, 103, 251-261 (1999) · Zbl 0942.65094
[70] Gülsu, M., A finite difference approach for solution of Burgers’ equation, Appl Math Comput, 175, 1245-1255 (2006) · Zbl 1093.65081
[71] Gülsu, M.; Öziş, T., Numerical solution of Burgers’ equation with restrictive Taylor approximation, Appl Math Comput, 171, 1192-1200 (2005) · Zbl 1090.65099
[72] Khater, A.; Temsah, R.; Hassan, M., A Chebyshev spectral collocation method for solving Burgers’-type equations, J Comput Appl Math, 222, 333-350 (2008) · Zbl 1153.65102
[73] Mittal, R.; Jiwari, R., Differential quadrature method for numerical solution of coupled viscous Burgers’ equations, Int J Comput Methods Eng Sci Mech, 13, 88-92 (2012) · Zbl 07871313
[74] Mittal, R.; Arora, G., Numerical solution of the coupled viscous Burgers’ equation, Commun Nonlinear Sci Numer Simul, 16, 1304-1313 (2011) · Zbl 1221.65264
[75] Rashid, A.; Ismail, A., A Fourier pseudospectral method for solving coupled viscous Burgers equations, Comput Methods Appl Math Comput Methods Appl Math, 9, 412-420 (2009) · Zbl 1183.35245
[76] Shukla, H.; Tamsir, M.; Srivastava, V. K.; Kumar, J., Numerical solution of two dimensional coupled viscous Burger equation using modified cubic B-spline differential quadrature method, AIP Adv, 4, Article 117134 pp. (2014)
[77] Srivastava, V. K.; Singh, S.; Awasthi, M. K., Numerical solutions of coupled Burgers’ equations by an implicit finite-difference scheme, AIP Adv, 3, Article 082131 pp. (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.