×

A new operational matrix of fractional order integration for the Chebyshev wavelets and its application for nonlinear fractional van der Pol oscillator equation. (English) Zbl 06877178

Summary: In this paper, an efficient and accurate computational method based on the Chebyshev wavelets (CWs) together with spectral Galerkin method is proposed for solving a class of nonlinear multi-order fractional differential equations (NMFDEs). To do this, a new operational matrix of fractional order integration in the Riemann-Liouville sense for the CWs is derived. Hat functions (HFs) and the collocation method are employed to derive a general procedure for forming this matrix. By using the CWs and their operational matrix of fractional order integration and Galerkin method, the problems under consideration are transformed into corresponding nonlinear systems of algebraic equations, which can be simply solved. Moreover, a new technique for computing nonlinear terms in such problems is presented. Convergence of the CWs expansion in one dimension is investigated. Furthermore, the efficiency and accuracy of the proposed method are shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As a useful application, the proposed method is applied to obtain an approximate solution for the fractional order Van der Pol oscillator (VPO) equation.

MSC:

65T60 Numerical methods for wavelets
34A08 Fractional ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
Full Text: DOI

References:

[1] Arikoglu A and Ozkol I, Solution of fractional differential equations by using differential transform method, Chaos Solitons Fractals 34 (2007) 1473-1481 · Zbl 1152.34306 · doi:10.1016/j.chaos.2006.09.004
[2] Arikoglu A and Ozkol I, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fractals 40 (2009) 521-529 · Zbl 1197.45001 · doi:10.1016/j.chaos.2007.08.001
[3] Atay F M, Van der pols oscillator under delayed feedback, J. Sound Vib. 218(2) (1998) 333-339 · Zbl 1235.70142 · doi:10.1006/jsvi.1998.1843
[4] Bagley R L and Torvik P J, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol. 27(3) (1983) 201-210 · Zbl 0515.76012 · doi:10.1122/1.549724
[5] Baillie R T, Long memory processes and fractional integration in econometrics, J. Econom. 73 (1996) 55-59 · Zbl 0854.62099
[6] Barari A, Omidvar M and Ganji D D, Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations, Acta Appl. Math. 104 (2008) 161-171 · Zbl 1197.34015 · doi:10.1007/s10440-008-9248-9
[7] Bohannan G W, Analog fractional order controller in temperature and motor control applications, J. Vib. Control 14 (2008) 1487-1498 · doi:10.1177/1077546307087435
[8] Canuto C, Hussaini M, Quarteroni A and Zang T, Spectral methods in fluid dynamics (1988) · Zbl 0658.76001
[9] Caponetto R, Dongola G, Fortuna L and Petras I, Fractional order systems, Sangapore: modeling and control applications (2010) · Zbl 1207.82058
[10] Cattani C, Shannon wavelets for the solution of integro-differential equations, Math. Probl. Eng., vol. 2010, Article ID 408418, 22 pages (2010), https://doi.org/10.1155/2010/408418 · Zbl 1191.65174
[11] Cattani C and Kudreyko A, Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind, Appl. Math. Comput. 215 (2010) 4164-4171 · Zbl 1186.65160
[12] Cattani C, Shannon wavelets theory, Math. Probl. Eng., Volume 2008, Article ID 164808, 24 pages (2008), https://doi.org/10.1155/2008/164808 · Zbl 1133.65116
[13] Darania P and Ebadian A, A method for the numerical solution of the integro-differential equations, Appl. Math. Comput. 188 (2007) 657-668 · Zbl 1121.65127
[14] Das S, Analytical solution of a fractional diffusion equation by variational iteration method, Comput. Math. Appl. 57 (2009) 483-487 · Zbl 1165.35398 · doi:10.1016/j.camwa.2008.09.045
[15] El-Mesiry A E M, El-Sayed A M A and El-Sakaa H A A, Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. Math. Comput. 160(3) (2005) 683-699 · Zbl 1062.65073
[16] El-Wakil S A, Elhanbaly A and Abdou M, Adomian decomposition method for solving fractional nonlinear differential equations, Appl. Math. Comput. 182 (2006) 313-324 · Zbl 1106.65115
[17] Erturk V and Momani S, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math. 215 (2008) 142-151 · Zbl 1141.65088 · doi:10.1016/j.cam.2007.03.029
[18] Erturk V S, S Momani and Odibat Z, Application of generalized differential transform method to multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 1642-1654 · Zbl 1221.34022 · doi:10.1016/j.cnsns.2007.02.006
[19] Guckenheimer J, Hoffman K and Weckesser W, The forced van der Pol equation I: the slow flow and its bifurcations, SIAM J. Appl. Dyn. Syst. 2(1) (2003) 1-35 · Zbl 1088.37504 · doi:10.1137/S1111111102404738
[20] Hashim I, Abdulaziz O and Momani S, Homotopy analysis method for fractional ivps, Commun. Nonlinear Sci. Numer. Simul 14 (2009) 674-684 · Zbl 1221.65277 · doi:10.1016/j.cnsns.2007.09.014
[21] He J H, Nonlinear oscillation with fractional derivative and its applications, in: International Conference on Vibrating Engineering 98 (1998) (China: Dalian) pp. 288-291
[22] He J H, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol. 15(2) (1999) 86-90
[23] Heydari M H, Hooshmandasl M R, Ghaini M and Cattani C, Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A 379 (2015) 71-76 · Zbl 1304.35748 · doi:10.1016/j.physleta.2014.11.012
[24] Heydari M H, Hooshmandasl M R and Mohammadi F, Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput. 234 (2014) 267-276 · Zbl 1298.65181
[25] Heydari M H, Hooshmandasl M R and Mohammadi F, Two-dimensional Legendre wavelets for solving time-fractional telegraph equation, Adv. Appl. Math. Mech. 6(2) (2014) 247-260 · Zbl 1308.65172 · doi:10.4208/aamm.12-m12132
[26] Heydari M H, Hooshmandasl M R, Maalek Ghaini F M and Mohammadi F, Wavelet collocation method for solving multi order fractional differential equations, J. Appl. Math., vol. 2012, Article ID 542401, 19 pages, https://doi.org/10.1155/2012/542401 · Zbl 1235.42034
[27] Heydari M H, Hooshmandasl M R, Mohammadi F and Cattani C, Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations, Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 37-48 · Zbl 1344.65126 · doi:10.1016/j.cnsns.2013.04.026
[28] Heydari M H, Hooshmandasl M R and Maalek Ghaini F M, Chebyshev wavelets method for solution of nonlinear fractional integro-differential equations in a large interval, Adv. Math. Phys., vol. 2013, Article ID 482083, 12 pages (2013) · Zbl 1287.65113
[29] Heydari M H, Hooshmandasl M R, Cattani C and Ling M, Legendre wavelets method for solving fractional population growth model in a closed system, Math. Probl. Eng., vol. 2013, Article ID 161030, 8 pages, https://doi.org/10.1155/2013/161030 · Zbl 1296.65108
[30] Heydari M H, Hooshmandasl M R, Maalek F M Ghaini and Fereidouni F, Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions, Eng. Anal. Bound. Elem. 37 (2013) 1331-1338 · Zbl 1287.65113 · doi:10.1016/j.enganabound.2013.07.002
[31] Heydari M H, Hooshmandasl M R, Maalek Ghaini F M, Marji M F, Dehghan R, and Memarian M H, A new wavelet method for solving the Helmholtz equation with complex solution, Numer. Methods Partial Differ. Equ. (2015) 1-16 · Zbl 1350.65125
[32] Heydari M H, Hooshmandasl M R, Loghmani G B and Cattani C, Wavelets Galerkin method for solving stochastic heat equation, Int. J. Comput. Math. 93(9) (2016) 1579-1596 · Zbl 1356.65018 · doi:10.1080/00207160.2015.1067311
[33] Heydari M H, Hooshmandasl M R and Maalek Ghaini F M, A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type, Appl. Math. Model. 38 (2014) 1597-1606 · Zbl 1369.65127 · doi:10.1016/j.apm.2013.09.013
[34] Jafari H, Khalique C M and Nazari M, An algorithm for the numerical solution of nonlinear fractional-order van der Pol oscillator equation, Math. Comput. Model. 55 (2012) 1782-1786 · Zbl 1255.65142 · doi:10.1016/j.mcm.2011.11.029
[35] Li Y L and Sun N, Numerical solution of fractional differential equation using the generalized block puls operational matrix, Comput. Math. Appl. 62(3) (2011) 1046-1054 · Zbl 1228.65135 · doi:10.1016/j.camwa.2011.03.032
[36] Li Y and Zhao W, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput. 216 (2010) 2276-2285 · Zbl 1193.65114
[37] Li Y, Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul. 15(9) (2009) 2284-2292 · Zbl 1222.65087 · doi:10.1016/j.cnsns.2009.09.020
[38] Mainardi F, Fractional calculus: some basic problems in continuum and statistical mechanics, edited by Carpinteri A, Mainardi F, Fractals and fractional calculus in continuum mechanics (1997) (New York: Springer) pp. 291-348 · Zbl 0917.73004
[39] Mandelbrot B, Some noises with \[1/f1\]/f spectrum, a bridge between direct current and white noise, IEEE Trans. Inf. Theory 13(2) (1967) 289-98 · Zbl 0148.40507 · doi:10.1109/TIT.1967.1053992
[40] Meerschaert M and Tadjeran C, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56 (2006) 80-90 · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[41] Momani S and Odibat Z, Numerical approach to differential equations of fractional order, J. Comput. Appl. Math. 207 (2007) 96-110 · Zbl 1119.65127 · doi:10.1016/j.cam.2006.07.015
[42] Odibat Z and Momani S, Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model. 32 (2008) 28-39 · Zbl 1133.65116 · doi:10.1016/j.apm.2006.10.025
[43] Odibat Z and Shawagfeh N, Generalized Taylor’s formula, Appl. Math. Comput. 186 (2007) 286-293 · Zbl 1122.26006
[44] Panda, R.; Dash, M., No article title, Fractional generalized splines and signal processing Signal Process., 86, 2340-2350 (2006) · Zbl 1172.65315
[45] Podlubny I, The Laplace transform method for linear differential equations of fractional order (1997) eprint arXiv:funct-an/9710005 · Zbl 0893.65051
[46] Podlubny I, Fractional differential equations (1999) (San Diego: Academic Press) · Zbl 0924.34008
[47] Rehman M and Kh R A, The Legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 16(11) (2011) 4163-4173 · Zbl 1222.65063 · doi:10.1016/j.cnsns.2011.01.014
[48] Rossikhin Y A and Shitikova M V, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev. 50 (1997) 15-67 · doi:10.1115/1.3101682
[49] Sohrabi S, Comparision Chebyshev wavelets method with BPFs method for solving Abel’s integral equation, Ain Shams Eng. J. 2 (2011) 249-254 · doi:10.1016/j.asej.2011.10.002
[50] Sweilam N H, Khader M M, and Al-Bar R F, Numerical studies for a multi-order fractional differential equation, Phys. Lett. A 371 (2007) 26-33 · Zbl 1209.65116 · doi:10.1016/j.physleta.2007.06.016
[51] Sweilam N, Khader M and Al-Bar R, Numerical studies for a multi-order fractional differential equation, Phys. Lett. A 371 (2007) 26-33 · Zbl 1209.65116 · doi:10.1016/j.physleta.2007.06.016
[52] Tripathi M P, Baranwal V K, Pandey R K and Singh O P, A new numerical algorithm to solve fractional differential equations based on operational matrix of generalized hat functions, Commun. Nonlinear Sci. Numer. Simul. 18 (2013) 1327-1340 · Zbl 1284.65086 · doi:10.1016/j.cnsns.2012.10.014
[53] Wang Y and Fan Q, The second kind Chebyshev wavelet method for solving fractional differential equations, Appl. Math. Comput. 218 (2012) 8592-8601 · Zbl 1245.65090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.