×

A numerical scheme based on Bernoulli wavelets and collocation method for solving fractional partial differential equations with Dirichlet boundary conditions. (English) Zbl 1415.65237

Summary: In this paper, an efficient and accurate numerical method is presented for solving two types of fractional partial differential equations. The fractional derivative is described in the Caputo sense. Our approach is based on Bernoulli wavelets collocation techniques together with the fractional integral operator, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations, which greatly simplifies the problem. By using Newton’s iterative method, this system is solved and the solution of fractional partial differential equations is achieved. Some results concerning the error analysis are obtained. The validity and applicability of the method are demonstrated by solving four numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions much easier.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65T60 Numerical methods for wavelets
65H10 Numerical computation of solutions to systems of equations
35R11 Fractional partial differential equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Bueno‐Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K., \(Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization, J. R. Soc. Interface\) vol. 11 ( 2014) p. 20140352.
[2] Cusimano, N., Bueno‐Orovio, A., Turner, I., Burrage, K., \(On the order of the fractional Laplacian in determining the spatio‐temporal evolution of a space‐fractional model of cardiac electrophysiology, PLoS One\) vol. 10 ( 2015) p. e0143938.
[3] Prodanov, D., Delbeke, J., \(A model of space‐fractional‐order diffusion in the glial scar, J. Theor. Biol\). vol. 403 ( 2016) pp. 97– 109. · Zbl 1343.92090
[4] Barkai, E., Metzler, R., Klafter, J., \(From continuous time random walks to the fractional Fokker‐Planck equation, Phys. Rev. E\) vol. 61 ( 2000) pp. 132– 138.
[5] Benson, D. A., Wheatcraft, S. W., Meerschaert, M. M., \(Application of a fractional advection dispersion equation, Water Resour. Res\). vol. 36 ( 2000) pp. 1403– 1412.
[6] Yuste, S. B., Acedo, L., Lindenberg, K., \(Reaction front in an\) urn:x-wiley:0749159X:media:num22279:num22279-math-\(0502reaction‐subdiffusion process, Phys. Rev. E\) vol. 69 ( 2004) p. 036126.
[7] Gorenflo, R., Mainardi, F., Scalas, E., and Raberto, M., \(Fractional calculus and continuous‐time finance. III. The diffusion limit, Math. Finance\) (Konstanz, 2000) ( 2001) pp. 171– 180. · Zbl 1138.91444
[8] Podlubny, I., Fractional differential equations, Academic Press, New York, 1999. · Zbl 0924.34008
[9] Zaslavsky, G. M., \(Chaos, fractional kinetics, and anomalous transport, Phys. Rep\). vol. 371 ( 2002) pp. 461– 580. · Zbl 0999.82053
[10] Metzler, R., Klafter, J., \(The random walks guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep\). vol. 339 ( 2000) pp. 1– 77. · Zbl 0984.82032
[11] Liu, F., Anh, V., Turner, I., \(Numerical solution of the space fractional Fokker‐Planck equation, J. Comput. Appl. Math\). vol. 166 ( 2004) pp. 209– 219. · Zbl 1036.82019
[12] Vityuk, A. N., Golushkov, A. V., \(Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscillations\) vol. 7 ( 2004) pp. 318– 325. · Zbl 1092.35500
[13] Zhou, Y., Jiao, F., Li, J., \(Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal\). vol. 71 ( 2009) pp. 3249– 3256. · Zbl 1177.34084
[14] Zhou, Y., Jiao, F., Li, J., \(Existence and uniqueness for p‐type fractional neutral differential equations, Nonlinear Anal\). vol. 71 ( 2009) pp. 2724– 2733. · Zbl 1175.34082
[15] Li, X., Xu, Ch., \(Existence and uniqueness of the weak solution of the space‐time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys. 8 ( 2010)\) pp. 1016– 1051. · Zbl 1364.35424
[16] Agrawal, O. P., \(Solution for a fractional diffusion‐wave equation defiend in a bounded domain, J. Nonlinear Dyn\). vol. 29 ( 2002) pp. 145– 155. · Zbl 1009.65085
[17] Lin, Y., Xu, C., \(Finite difference/spectral approximation for the time‐fractional differential diffusion equation, J. Comput. Phys\). vol. 255 ( 2007) pp. 1533– 1552. · Zbl 1126.65121
[18] Cui, M. R., \(Compact finite difference method for the fractional diffusion equation, J. Comput. Phys\). vol. 228 ( 2009) pp. 7792– 7804. · Zbl 1179.65107
[19] Chen, W., Ye, L., Sun, H., \(Fractional diffusion equations by the Kansa method, Comput. Math. Appl\). vol. 59 ( 2010) pp. 1614– 1620. · Zbl 1189.35356
[20] Jumarie, G., \(Fractional partial differential equation and modified Riemann‐Liouville derivative new methods for solution, J. Appl. Math. Comput\). vol. 24 ( 2007) pp. 31– 48. · Zbl 1145.26302
[21] Du, R., Cao, W. R., Sun, Z. Z., \(A compact difference scheme for the fractional diffusion‐wave equation, Appl. Math. Model\). vol. 34 ( 2010) pp. 2998– 3007. · Zbl 1201.65154
[22] Fu, Z. J., Chen, W., Yang, H. T., \(Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys\). vol. 235 ( 2013) pp. 52– 66. · Zbl 1291.76256
[23] Chen, J., Liu, F., Anh, V., Shen, S., Liu, Q., Liao, C., \(The analytical solution and numerical solution of the fractional diffusion‐wave equation with damping, Appl. Math. Comput\). vol. 219 ( 2012) pp. 1737– 1748. · Zbl 1290.35306
[24] Bueno‐Orovio, A., Kay, D., Burrage, K., \(Fourier spectral methods for fractional‐in‐space reaction‐diffusion equations, BIT Numer. Math\). vol. 54 ( 2014) pp. 937– 954. · Zbl 1306.65265
[25] Tian, W., Deng, W., Wu, Y., \(Polynomial spectral collocation method for space fractional advection‐diffusion equation, Numer. Methods Partial Differ. Equ\). vol. 30 ( 2014) pp. 514– 535. · Zbl 1287.65093
[26] Meerschaert, M. M., Tadjeran, C., \(Finite difference approximations for fractional advection‐dispersion flow equations, J. Comput. Appl. Math\). vol. 172 ( 2004) pp. 65– 77. · Zbl 1126.76346
[27] Momani, S., Odibat, Z., \(Numerical solutions of the space -- time fractional advection -- dispersion equation, Numer. Methods Partial Differ. Equ\). vol. 24 ( 2008) pp. 1416– 1429. · Zbl 1148.76044
[28] Dehghan, M., Manafian, J., Saadatmandi, A., \(Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differ. Equ\). vol. 26 ( 2010) pp. 448– 479. · Zbl 1185.65187
[29] Cifani, S., Jakobsen, E. R., Karlsen, K. H., \(The discontinuous Galerkin method for fractional degenerate convection‐diffusion equations, BIT Numer. Math\). vol. 51 ( 2011) pp. 809– 844. · Zbl 1247.65128
[30] Bhrawy, A. H., \(A Jacobi‐Gauss‐Lobatto collocation method for solving generalized Fitzhugh‐Nagumo equation with time‐dependent coefficients, Appl. Math. Comput\). vol. 222 ( 2013) pp. 255– 264. · Zbl 1329.65234
[31] Parand, K., Baharifard, E., Babolghani, F. B., \(Comparison between rational Gegenbauer and modifed generalized Laguerre functions collocation methods for solving the case of heat transfer equations arising in porous medium, Int. J. Ind. Math\). vol. 4 ( 2012) pp. 107– 122.
[32] Kadem, A., Luchko, Y., Baleamnu, D., \(Spectral method for solution of the fractional transport equation, Rep. Math. Phys\). vol. 66 ( 2010) pp. 103– 115. · Zbl 1237.82041
[33] Shamsi, M., Dehghan, M., \(Determination of a control function in three‐dimensional parabolic equations by Legendre pseudospectral method, Numer. Methods Partial Differ. Equ. 28 ( 2012)\) pp. 74– 93. · Zbl 1252.65161
[34] Heydari, M. H., Hooshmandasl, M. R., Mohammadi, F., \(Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput\). vol. 234 ( 2014) pp. 267– 276. · Zbl 1298.65181
[35] Rahimkhani, P., Ordokhani, Y., Babolian, E., \(A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations, Numer. Algorithms\) vol. 74 ( 2016) pp. 223– 245. · Zbl 1358.65043
[36] Aziz, I., Islam, S. U., Sarler, B., \(Wavelets collocation methods for the numerical solution of elliptic BV problems, Appl. Math. Model\). vol. 37 ( 2013) pp. 676– 694. · Zbl 1352.65661
[37] Razzaghi, M., Yousefi, S., \(Legendre wavelets operational matrix of integration, Int. J. Syst. Sci\). vol. 32 ( 2001) pp. 495– 502. · Zbl 1006.65151
[38] Maleknejad, K., Lotfi, T., Mahdiani, K., \(Numerical solution of first kind Fredholm integral equations with wavelets‐Galerkin method and wavelets precondition, Appl. Math. Comput\). vol. 186 ( 2007) pp. 794– 800. · Zbl 1114.65157
[39] Dehghan, M., Lakestani, M., \(Numerical solution of nonlinear system of second‐order boundary value problems using cubic B‐spline scaling functions, Int. J. Comput. Math\). vol. 85 ( 2008) pp. 1455– 1461. · Zbl 1149.65058
[40] Comincioli, V., Naldi, G., Scapolla, T., \(A wavelet‐based method for numerical solution of nonlinear evolution equations, Appl. Numer. Math\). vol. 33 ( 2000) pp. 291– 297. · Zbl 0964.65112
[41] Wu, J. L., \(A wavelet operational method for solving fractional partial differential equations numerically, Appl. Math. Comput\). vol. 214 ( 2009) pp. 31– 40. · Zbl 1169.65127
[42] Zhu, X., Lei, G., Pan, G., \(On application of fast and adaptive Battle‐Lemarie wavelets to modelling of multiple lossy transmission lines, J. Comput. Phys\). vol. 132 ( 1997) pp. 299– 311. · Zbl 0882.65123
[43] Babolian, E., Fattahzdeh, F., \(Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Appl. Math. Comput\). vol. 188 ( 2007) pp. 417– 426. · Zbl 1117.65178
[44] Rahimkhani, P., Ordokhani, Y., Babolian, E., \(An efficient approximate method for solving delay fractional optimal control problems, Nonlinear Dyn\). vol. 86 ( 2016) pp. 1649– 1661. · Zbl 1371.34016
[45] Momani, S., Odibat, Z., \(Fractional green function for linear time -- fractional inhomogeneous partial differential equations in fluid mechanics, J. Appl. Math. Comput\). vol. 24 ( 2007) pp. 167– 178. · Zbl 1134.35093
[46] Rahimkhani, P., Ordokhani, Y., Babolian, E., \(Fractional‐order Bernoulli wavelets and their applications, Appl. Math. Model\). vol. 40 ( 2016) pp. 8087– 8107. · Zbl 1471.65226
[47] Nemati, A., Yousefi, S. A., \(A numerical scheme for solving two‐dimensional fractional optimal control problems by the Ritz method combined with fractional operational matrix, IMA J. Math. Control Inf\). vol. 34 ( 2017) pp. 1079– 1097. · Zbl 1400.49033
[48] Keshavarz, E., Ordokhani, Y., Razzaghi, M., \(Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Model\). vol. 38 ( 2014) pp. 6038– 6051. · Zbl 1429.65170
[49] Nemati, S., Lima, P. M., Ordokhani, Y., \(Numerical solution of a class of two‐dimensional nonlinear Volterra integral equations using Legendre polynomials, J. Comput. Appl. Math\). vol. 242 ( 2013) pp. 53– 69. · Zbl 1255.65248
[50] Chen, Y., Wu, Y., Cui, Y., Wang, Z., Jin, D., \(Wavelet method for a class of fractional convection‐diffusion equation with variable coefficients, J. Comput. Sci\). vol. 1 ( 2010) pp. 146– 149.
[51] Saadatmandi, A., Dehghan, M., Azizi, M. R., \(The Sinc‐Legendre collocation method for a class of fractional convection‐diffusion equations with variable coefficients, Commun. Nonlinear Sci\). vol. 17 ( 2012) pp. 4125– 4136. · Zbl 1250.65121
[52] Zhou, F., Xu, X., \(The third kind Chebyshev wavelets collocation method for solving the time‐fractional convection diffusion equations with variable coefficients, Appl. Math. Comput\). vol. 280 ( 2016) pp. 11– 29. · Zbl 1410.65407
[53] Daftardar‐Gejji, V., Bhalekar, S., \(Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method, Comput. Math. Appl\). vol. 59 ( 2010) pp. 1801– 1809. · Zbl 1189.35357
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.