×

Nonlocal trace spaces and extension results for nonlocal calculus. (English) Zbl 1496.46031

Summary: For a given Lipschitz domain \(\Omega \), it is a classical result that the trace space of \(W^{1 , p}(\Omega)\) is \(W^{1 - 1 / p , p}(\partial \Omega)\), namely any \(W^{1 , p}(\Omega)\) function has a well-defined \(W^{1 - 1 / p , p}(\partial \Omega)\) trace on its codimension-1 boundary \(\partial \Omega\) and any \(W^{1 - 1 / p , p}(\partial \Omega)\) function on \(\partial \Omega\) can be extended to a \(W^{1 , p}(\Omega)\) function. In this work, we study function spaces for nonlocal Dirichlet problems involving integrodifferential operators with a finite range of nonlocal interactions, and provide a characterization of their trace spaces. For these nonlocal Dirichlet problems, the boundary conditions are normally imposed on a region with finite thickness volume which lies outside of the domain. We introduce a function space on the volumetric boundary region that serves as a trace space for these nonlocal problems and study the related extension results. Moreover, we discuss the consistency of the new nonlocal trace space with the classical \(W^{1 - 1 / p , p}(\partial \Omega)\) space as the size of nonlocal interaction tends to zero. In making this connection, we conduct an investigation on the relations between nonlocal interactions on a larger domain and the induced interactions on its subdomain. The various forms of trace, embedding and extension theorems may then be viewed as consequences in different scaling limits.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47G20 Integro-differential operators
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
35R11 Fractional partial differential equations

References:

[1] Adams, R. A.; Fournier, J. J., Sobolev Spaces (2003), Elsevier · Zbl 1098.46001
[2] Andreu, F.; Mazón, J. M.; Rossi, J. D.; Toledo, J., A nonlocal p-Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Appl., 90, 2, 201-227 (2008) · Zbl 1165.35322
[3] Andreu, F.; Mazón, J. M.; Rossi, J. D.; Toledo, J., A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 40, 5, 1815-1851 (2009) · Zbl 1183.35034
[4] Andreu-Vaillo, F.; Mazón, J. M.; Rossi, J. D.; Toledo-Melero, J. J., Nonlocal Diffusion Problems, vol. 165 (2010), American Mathematical Soc. · Zbl 1214.45002
[5] Avkhadiev, F. G., Hardy-type inequalities on planar and spatial open sets, Proc. Steklov Inst. Math., 255, 1, 2-12 (2006) · Zbl 1351.42024
[6] Avkhadiev, F. G.; Nasibullin, R., Hardy-type inequalities in arbitrary domains with finite inner radius, Sib. Math. J., 55, 2, 191-200 (2014) · Zbl 1315.26016
[7] Bobaru, F.; Duangpanya, M., The peridynamic formulation for transient heat conduction, Int. J. Heat Mass Transf., 53, 4047-4059 (2010) · Zbl 1194.80010
[8] Bobaru, F.; Foster, J.; Geubelle, P.; Silling, S., Handbook of Peridynamic Modeling, Modern Mechanics and Mathematics (2015), Taylor & Francis
[9] Bobaru, F.; Foster, J. T.; Geubelle, P. H.; Silling, S. A., Handbook of Peridynamic Modeling (2016), CRC Press · Zbl 1351.74001
[10] Bobaru, F.; Ha, Y. D., Adaptive refinement and multiscale modeling in 2D peridynamics, Int. J. Multiscale Comput. Eng., 9, 6 (2011)
[11] Bogdan, K.; Grzywny, T.; Pietruska-Pałuba, K.; Rutkowski, A., Extension and trace for nonlocal operators, J. Math. Pures Appl., 137, 33-69 (2020) · Zbl 1452.46023
[12] Borthagaray, J. P.; Li, W.; Nochetto, R. H., Finite element discretizations of nonlocal minimal graphs: convergence (2019), arXiv preprint · Zbl 1447.65129
[13] Bourgain, J.; Brezis, H.; Mironescu, P., Another Look at Sobolev Spaces, 439-455 (2001), IOS Press · Zbl 1103.46310
[14] Carrillo, C.; Fife, P., Spatial effects in discrete generation population models, J. Math. Biol., 50, 2, 161-188 (2005) · Zbl 1080.92054
[15] Chen, J.; Jiao, Y.; Jiang, W.; Zhang, Y., Peridynamics boundary condition treatments via the pseudo-layer enrichment method and variable horizon approach, Math. Mech. Solids, Article 1081286520961144 pp. (2020)
[16] Chen, Z.; Bobaru, F., Peridynamic modeling of pitting corrosion damage, J. Mech. Phys. Solids, 78, 352-381 (2015)
[17] Chen, Z.; Zhang, G.; Bobaru, F., The influence of passive film damage on pitting corrosion, J. Electrochem. Soc., 163, C19-C24 (2015)
[18] Cheng, Z.; Zhang, G.; Wang, Y.; Bobaru, F., A peridynamic model for dynamic fracture in functionally graded materials, Compos. Struct., 133, 529-546 (2015)
[19] D’Elia, M.; Du, Q.; Glusa, C.; Gunzburger, M.; Tian, X.; Zhou, Z., Numerical methods for nonlocal and fractional models, Acta Numer., 29, 1-124 (2020) · Zbl 07674560
[20] Dipierro, S.; Ros-Oton, X.; Valdinoci, E., Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., 33, 2, 377-416 (2017) · Zbl 1371.35322
[21] Dipierro, S.; Savin, O.; Valdinoci, E., Boundary behavior of nonlocal minimal surfaces, J. Funct. Anal., 272, 5, 1791-1851 (2017) · Zbl 1358.49038
[22] Du, Q.; Gunzburger, M.; Lehoucq, R. B.; Zhou, K., Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54, 4, 667-696 (2012) · Zbl 1422.76168
[23] Du, Q.; Gunzburger, M.; Lehoucq, R. B.; Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23, 03, 493-540 (2013) · Zbl 1266.26020
[24] Du, Q.; Mengesha, T.; Tian, X., Fractional Hardy-type and trace theorems for nonlocal function spaces with heterogeneous localization (2021), arXiv preprint
[25] Du, Q.; Tao, Y.; Tian, X., A peridynamic model of fracture mechanics with bond-breaking, J. Elast., 1-22 (2017)
[26] Dyda, B.; Kassmann, M., Function spaces and extension results for nonlocal Dirichlet problems, J. Funct. Anal., 277, 11, Article 108134 pp. (2019) · Zbl 1432.46019
[27] Dyda, B.; Kijaczko, M., On density of smooth functions in weighted fractional Sobolev spaces, Nonlinear Anal., 205, Article 112231 pp. (2021) · Zbl 1470.46057
[28] Foss, M., Traces on general sets in \(\mathbb{R}^n\) for functions with no differentiability requirements (2020), arXiv preprint
[29] Foss, M.; Radu, P., Differentiability and integrability properties for solutions to nonlocal equations, (New Trends in Differential Equations, Control Theory and Optimization: Proceedings of the 8th Congress of Romanian Mathematicians (2016), World Scientific), 105-119 · Zbl 1353.45007
[30] Foss, M. D.; Radu, P., Bridging local and nonlocal models: convergence and regularity, (Handbook of Nonlocal Continuum Mechanics for Materials and Structures (2018)), 1-21
[31] Foss, M. D.; Radu, P.; Wright, C., Existence and regularity of minimizers for nonlocal energy functionals, Differ. Integral Equ., 31, 11/12, 807-832 (2018) · Zbl 1474.49046
[32] Gagliardo, E., Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Semin. Mat. Univ. Padova, 27, 284-305 (1957) · Zbl 0087.10902
[33] Gounoue, G. F.F., \( L^2\)-Theory for nonlocal operators on domains (2020), Bielefeld University, PhD thesis
[34] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics (1985), Pitman Advanced Pub. Program · Zbl 0695.35060
[35] Gunzburger, M.; Lehoucq, R. B., A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul., 8, 5, 1581-1598 (2010) · Zbl 1210.35057
[36] Ha, Y. D.; Bobaru, F., Studies of dynamic crack propagation and crack branching with peridynamics, Int. J. Fract., 162, 1, 229-244 (2010) · Zbl 1425.74416
[37] Ha, Y. D.; Bobaru, F., Characteristics of dynamic brittle fracture captured with peridynamics, Eng. Fract. Mech., 78, 6, 1156-1168 (2011)
[38] Hardy, G.; Littlewood, J.; Polya, G., Inequalities (1952), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, 1988 · Zbl 0634.26008
[39] Hu, W.; Ha, Y. D.; Bobaru, F., Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites, Comput. Methods Appl. Mech. Eng., 217, 247-261 (2012) · Zbl 1253.74008
[40] Jafarzadeh, S.; Chen, Z.; Bobaru, F., Peridynamic modeling of repassivation in pitting corrosion of stainless steel, Corrosion, 74 (2017)
[41] Koskela, P.; Soto, T.; Wang, Z., Traces of weighted function spaces: dyadic norms and Whitney extensions, Sci. China Math., 60, 11, 1981-2010 (2017) · Zbl 1406.46024
[42] Le, Q.; Bobaru, F., Surface corrections for peridynamic models in elasticity and fracture, Comput. Mech., 61, 4, 499-518 (2018) · Zbl 1446.74084
[43] Li, S.; Chen, Z.; Tan, L.; Bobaru, F., Corrosion-induced embrittlement in zk60a mg alloy, Mater. Sci. Eng. A, 713 (2017)
[44] Lou, Y.; Zhang, X.; Osher, S.; Bertozzi, A., Image recovery via nonlocal operators, J. Sci. Comput., 42, 2, 185-197 (2010) · Zbl 1203.65088
[45] Macek, R. W.; Silling, S. A., Peridynamics via finite element analysis, Finite Elem. Anal. Des., 43, 15, 1169-1178 (2007)
[46] Madenci, E.; Oterkus, E., Peridynamic theory, (Peridynamic Theory and Its Applications (2014), Springer), 19-43 · Zbl 1295.74001
[47] Mengesha, T., Nonlocal Korn-type characterization of Sobolev vector fields, Commun. Contemp. Math., 14, 04, Article 1250028 pp. (2012) · Zbl 1250.46021
[48] Mengesha, T.; Du, Q., The bond-based peridynamic system with Dirichlet-type volume constraint, Proc. R. Soc. Edinb., Sect. A, 144, 1, 161-186 (2014) · Zbl 1381.35177
[49] Mengesha, T.; Du, Q., Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elast., 116, 1, 27-51 (2014) · Zbl 1297.74051
[50] Oterkus, E., Peridynamic theory for modeling three-dimensional damage growth in metallic and composite structures (2010), The University of Arizona, PhD thesis
[51] S. Oterkus, Peridynamics for the solution of multiphysics problems, 2015.
[52] Oterkus, S.; Madenci, E.; Agwai, A., Peridynamic thermal diffusion, J. Comput. Phys., 265, 71-96 (2014) · Zbl 1349.80020
[53] Ponce, A. C., An estimate in the spirit of Poincaré’s inequality, J. Eur. Math. Soc., 6, 1, 1-15 (2004) · Zbl 1051.46019
[54] Prudhomme, S.; Diehl, P., On the treatment of boundary conditions for bond-based peridynamic models, Comput. Methods Appl. Mech. Eng., 372, Article 113391 pp. (2020) · Zbl 1506.74433
[55] Ros-Oton, X., Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., 3-26 (2016) · Zbl 1337.47112
[56] Rutkowski, A., Function spaces and the Dirichlet problem for nonlocal operators (2020), Wrocław University of Science and Technology: Wrocław University of Science and Technology Wrocław, Poland, Ph.D. thesis
[57] Schep, A. R., Minkowski’s integral inequality for function norms, (Operator Theory in Function Spaces and Banach Lattices (1995), Springer), 299-308 · Zbl 0849.46020
[58] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030
[59] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elast., 88, 2, 151-184 (2007) · Zbl 1120.74003
[60] Slobodetskiĭ, L. N., S.L. Sobolev’s spaces of fractional order and their application to boundary problems for partial differential equations, (Doklady Akademii Nauk, vol. 118 (1958), Russian Academy of Sciences), 243-246 · Zbl 0088.30302
[61] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (PMS-30), vol. 30 (1970), Princeton University Press · Zbl 0207.13501
[62] Tao, Y.; Tian, X.; Du, Q., Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations, Appl. Math. Comput., 305, 282-298 (2017) · Zbl 1411.74058
[63] Tao, Y.; Tian, X.; Du, Q., Nonlocal models with heterogeneous localization and their application to seamless local-nonlocal coupling, Multiscale Model. Simul., 17, 3, 1052-1075 (2019) · Zbl 1447.45001
[64] Tian, X.; Du, Q., Trace theorems for some nonlocal function spaces with heterogeneous localization, SIAM J. Math. Anal., 49, 2, 1621-1644 (2017) · Zbl 1373.46030
[65] Trask, N.; You, H.; Yu, Y.; Parks, M. L., An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics, Comput. Methods Appl. Mech. Eng., 343, 151-165 (2019) · Zbl 1440.74463
[66] You, H.; Lu, X.; Trask, N.; Yu, Y., An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems, ESAIM: Math. Model. Numer. Anal., 54, 4, 1373-1413 (2020) · Zbl 1474.45069
[67] You, H.; Yu, Y.; Kamensky, D., An asymptotically compatible formulation for local-to-nonlocal coupling problems without overlapping regions, Comput. Methods Appl. Mech. Eng., 366, Article 113038 pp. (2020) · Zbl 1442.74244
[68] You, H.; Yu, Y.; Trask, N.; Gulian, M.; D’Elia, M., Data-driven learning of robust nonlocal physics from high-fidelity synthetic data (2020), arXiv preprint
[69] Yu, Y.; Bargos, F. F.; You, H.; Parks, M. L.; Bittencourt, M. L.; Karniadakis, G. E., A partitioned coupling framework for peridynamics and classical theory: analysis and simulations, Comput. Methods Appl. Mech. Eng., 340, 905-931 (2018) · Zbl 1440.74045
[70] Yu, Y.; You, H.; Trask, N., An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture, Comput. Methods Appl. Mech. Eng., 377, Article 113691 pp. (2021) · Zbl 1506.74506
[71] Zhang, G.; Gazonas, G. A.; Bobaru, F., Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: a peridynamic analysis, Int. J. Impact Eng., 113, 73-87 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.