×

Extension and trace for nonlocal operators. (English. French summary) Zbl 1452.46023

Summary: We prove an optimal extension and trace theorem for Sobolev spaces of nonlocal operators. The extension is given by a suitable Poisson integral and solves the corresponding nonlocal Dirichlet problem. We give a Douglas-type formula for the quadratic form of the Poisson extension.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35A15 Variational methods applied to PDEs
31C05 Harmonic, subharmonic, superharmonic functions on other spaces

References:

[1] Adams, R.; Fournier, J., Sobolev Spaces, Pure and Applied Mathematics (2003), Elsevier Science · Zbl 1098.46001
[2] Baeumer, B.; Luks, T.; Meerschaert, M. M., Space-time fractional Dirichlet problems, Math. Nachr., 291, 17-18, 2516-2535 (2018) · Zbl 1476.35294
[3] Barles, G.; Chasseigne, E.; Georgelin, C.; Jakobsen, E. R., On Neumann type problems for nonlocal equations set in a half space, Trans. Am. Math. Soc., 366, 9, 4873-4917 (2014) · Zbl 1323.35192
[4] Blumenthal, R. M.; Getoor, R. K., Markov Processes and Potential Theory, Pure and Applied Mathematics, vol. 29 (1968), Academic Press: Academic Press New York-London · Zbl 0169.49204
[5] Bogdan, K., The boundary Harnack principle for the fractional Laplacian, Stud. Math., 123, 1, 43-80 (1997) · Zbl 0870.31009
[6] Bogdan, K., Representation of α-harmonic functions in Lipschitz domains, Hiroshima Math. J., 29, 2, 227-243 (1999) · Zbl 0936.31008
[7] Bogdan, K.; Byczkowski, T., Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains, Stud. Math., 133, 1, 53-92 (1999) · Zbl 0923.31003
[8] Bogdan, K.; Byczkowski, T., Potential theory of Schrödinger operator based on fractional Laplacian, Probab. Math. Stat., 20, 2256, 293-335 (2000), (2, Acta Univ. Wratislav. No. 2256) · Zbl 0996.31003
[9] Bogdan, K.; Dyda, B.; Luks, T., On Hardy spaces of local and nonlocal operators, Hiroshima Math. J., 44, 2, 193-215 (2014) · Zbl 1312.42026
[10] Bogdan, K.; Grzywny, T.; Ryznar, M., Density and tails of unimodal convolution semigroups, J. Funct. Anal., 266, 6, 3543-3571 (2014) · Zbl 1290.60002
[11] Bogdan, K.; Grzywny, T.; Ryznar, M., Dirichlet heat kernel for unimodal Lévy processes, Stoch. Process. Appl., 124, 11, 3612-3650 (2014) · Zbl 1320.60112
[12] Bogdan, K.; Grzywny, T.; Ryznar, M., Barriers, exit time and survival probability for unimodal Lévy processes, Probab. Theory Relat. Fields, 162, 1-2, 155-198 (2015) · Zbl 1317.31016
[13] Bogdan, K.; Jakubowski, T., Estimates of the Green function for the fractional Laplacian perturbed by gradient, Potential Anal., 36, 3, 455-481 (2012) · Zbl 1238.35018
[14] Bogdan, K.; Rosiński, J.; Serafin, G.; Wojciechowski, Ł., Lévy systems and moment formulas for mixed Poisson integrals, (Stochastic Analysis and Related Topics. Stochastic Analysis and Related Topics, Progr. Probab., vol. 72 (2017), Birkhäuser/Springer: Birkhäuser/Springer Cham), 139-164 · Zbl 1409.60074
[15] Bogdan, K.; Sztonyk, P., Estimates of the potential kernel and Harnack’s inequality for the anisotropic fractional Laplacian, Stud. Math., 181, 2, 101-123 (2007) · Zbl 1223.47038
[16] Caffarelli, L.; Roquejoffre, J.-M.; Savin, O., Nonlocal minimal surfaces, Commun. Pure Appl. Math., 63, 9, 1111-1144 (2010) · Zbl 1248.53009
[17] Chen, Z.-Q., On notions of harmonicity, Proc. Am. Math. Soc., 137, 10, 3497-3510 (2009) · Zbl 1181.60118
[18] Chen, Z.-Q.; Fukushima, M., Symmetric Markov Processes, Time Change, and Boundary Theory, London Mathematical Society Monographs Series, vol. 35 (2012), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1253.60002
[19] Chen, Z.-Q.; Kim, P.; Song, R., Dirichlet heat kernel estimates for rotationally symmetric Lévy processes, Proc. Lond. Math. Soc. (3), 109, 1, 90-120 (2014) · Zbl 1304.60080
[20] Chung, K. L.; Zhao, Z. X., From Brownian Motion to Schrödinger’s Equation, Grundlehren der Mathematischen Wissenschaften, vol. 312 (1995), Springer-Verlag: Springer-Verlag Berlin · Zbl 0819.60068
[21] Dhara, R. N.; Kałamajska, A., On one extension theorem dealing with weighted Orlicz-Slobodetskii space. Analysis on Lipschitz subgraph and Lipschitz domain, Math. Inequal. Appl., 19, 2, 451-488 (2016) · Zbl 1356.46029
[22] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023
[23] Ding, Z., A proof of the trace theorem of Sobolev spaces on Lipschitz domains, Proc. Am. Math. Soc., 124, 2, 591-600 (1996) · Zbl 0841.46021
[24] Dipierro, S.; Ros-Oton, X.; Valdinoci, E., Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., 33, 2, 377-416 (2017) · Zbl 1371.35322
[25] Dłotko, T.; Kania, M. B.; Sun, C., Quasi-geostrophic equation in \(\mathbb{R}^2\), J. Differ. Equ., 259, 2, 531-561 (2015) · Zbl 1325.35161
[26] Douglas, J., Solution of the problem of plateau, Trans. Am. Math. Soc., 33, 1, 263-321 (1931) · JFM 57.0601.01
[27] Dyda, B.; Kassmann, M., Function spaces and extension results for nonlocal Dirichlet problems, J. Funct. Anal. (2018)
[28] Dynkin, E. B., Markov Processes. Vols. I, II, Die Grundlehren der Mathematischen Wissenschaften, Bände 121, 122 (1965), Academic Press Inc., Publishers/Springer-Verlag: Academic Press Inc., Publishers/Springer-Verlag New York/Berlin-Göttingen-Heidelberg, translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone · Zbl 0132.37901
[29] Evans, L. C., Partial Differential Equations, Graduate Studies in Mathematics, vol. 19 (2010), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1194.35001
[30] Felsinger, M.; Kassmann, M.; Voigt, P., The Dirichlet problem for nonlocal operators, Math. Z., 279, 3-4, 779-809 (2015) · Zbl 1317.47046
[31] Fiscella, A.; Servadei, R.; Valdinoci, E., Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn., Math., 40, 1, 235-253 (2015) · Zbl 1346.46025
[32] Fukushima, M.; Oshima, Y.; Takeda, M., Dirichlet Forms and Symmetric Markov Processes, De Gruyter Studies in Mathematics, vol. 19 (2011), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin · Zbl 1227.31001
[33] Grzywny, T.; Kassmann, M.; Leżaj, Ł., Remarks on the nonlocal Dirichlet problem (2018), arXiv e-prints
[34] Grzywny, T.; Kwaśnicki, M., Potential kernels, probabilities of hitting a ball, harmonic functions and the boundary Harnack inequality for unimodal Lévy processes, Stoch. Process. Appl., 128, 1, 1-38 (2018) · Zbl 1386.60265
[35] Grzywny, T.; Ryznar, M.; Trojan, B., Asymptotic behaviour and estimates of slowly varying convolution semigroups, Int. Math. Res. Not. (2018)
[36] Kang, J.; Kim, P., On estimates of Poisson kernels for symmetric Lévy processes, J. Korean Math. Soc., 50, 5, 1009-1031 (2013) · Zbl 1277.31013
[37] Khoshnevisan, D.; Schilling, R., From Lévy-Type Processes to Parabolic SPDEs, Advanced Courses in Mathematics - CRM Barcelona (2016), Birkhäuser/Springer: Birkhäuser/Springer Cham, edited by Lluís Quer-Sardanyons and Frederic Utzet · Zbl 1382.60005
[38] Klimsiak, T.; Rozkosz, A., Renormalized solutions of semilinear equations involving measure data and operator corresponding to Dirichlet form, NoDEA Nonlinear Differ. Equ. Appl., 22, 6, 1911-1934 (2015) · Zbl 1328.35263
[39] Koskela, P.; Soto, T.; Wang, Z., Traces of weighted function spaces: dyadic norms and Whitney extensions, Sci. China Math., 60, 11, 1981-2010 (2017) · Zbl 1406.46024
[40] Kulczycki, T.; Ryznar, M., Gradient estimates of harmonic functions and transition densities for Lévy processes, Trans. Am. Math. Soc., 368, 1, 281-318 (2016) · Zbl 1336.31012
[41] Millot, V.; Sire, Y.; Wang, K., Asymptotics for the fractional Allen-Cahn equation and stationary nonlocal minimal surfaces, Arch. Ration. Mech. Anal. (2018)
[42] Pruitt, W. E., The growth of random walks and Lévy processes, Ann. Probab., 9, 6, 948-956 (1981) · Zbl 0477.60033
[43] Ros-Oton, X., Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., 60, 1, 3-26 (2016) · Zbl 1337.47112
[44] Rutkowski, A., The Dirichlet problem for nonlocal Lévy-type operators, Publ. Mat., 62, 1, 213-251 (2018) · Zbl 1391.35444
[45] Sato, K.-i., Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, vol. 68 (1999), Cambridge University Press: Cambridge University Press Cambridge, translated from the 1990 Japanese original, revised by the author · Zbl 0973.60001
[46] Schilling, R. L.; Song, R.; Vondraček, Z., Bernstein Functions. Theory and Applications, De Gruyter Studies in Mathematics, vol. 37 (2012), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin · Zbl 1257.33001
[47] Servadei, R.; Valdinoci, E., Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58, 1, 133-154 (2014) · Zbl 1292.35315
[48] Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60, 1, 67-112 (2007) · Zbl 1141.49035
[49] Sztonyk, P., On harmonic measure for Lévy processes, Probab. Math. Stat., 20, 383 (2000), (2, Acta Univ. Wratislav. No. 2256) · Zbl 0991.60067
[50] Wu, J.-M., Harmonic measures for symmetric stable processes, Stud. Math., 149, 3, 281-293 (2002) · Zbl 0990.60074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.