×

Comparison of quantum state protection against decoherence via weak measurement, a survey. (English) Zbl 1495.81008

Summary: One of the crucial tasks in quantum systems is to reduce the effects of decoherence due to the unavoidable interactions between a system and its environment. Many protection schemes have been proposed recently, among them the weak measurement quantum measurement reversal (WMQMR), weak measurement-based quantum feedback control (QFBC) and quantum feedforward control (QFFC) are reviewed in this paper. By considering weak measurement, the aim is to find a balance between information gain and disturbance of the system caused by the measurement. We classify different types of measurement and give the definition of noise sources and their effects on the state of the system. Finally, we compare and analyze the performance of the discussed protection schemes for different noise sources by numerical simulations.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
46G10 Vector-valued measures and integration
81S22 Open systems, reduced dynamics, master equations, decoherence
81Q93 Quantum control
81P16 Quantum state spaces, operational and probabilistic concepts

References:

[1] Zhang, J., Liu, Y., Wu, R.-B., Jacobs, K. and Nori, F., Phys. Rep.679 (2017) 1, https://doi.org/10.1016/j.physrep.2017.02.003.
[2] Breuer, H.-P. and Petruccione, F., The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002). · Zbl 1053.81001
[3] Tombesi, P., Giovannetti, V. and Vitali, D., Quantum state protection using all-optical feedback, in Directions in Quantum Optics (Springer, 2001), pp. 204-213.
[4] Carvalho, A. R. R., Milman, P., de Matos Filho, R. L. and Davidovich, L., Decoherence, pointer engineering and quantum state protection, in Modern Challenges in Quantum Optics (Springer, 2001), pp. 65-79. · Zbl 1021.81007
[5] Zeng, X., Ge, G.-Q. and Zubairy, M. S., Opt. Exp.27 (2019) 25789.
[6] Huang, Z. and Situ, H., Int. J. Theor. Phys.56 (2017) 503. · Zbl 1358.81057
[7] Cong, S., Control of Quantum Systems: Theory and Methods (John Wiley & Sons, 2014). · Zbl 1298.81001
[8] Joos, E., Elements of environmental decoherence, in Decoherence: Theoretical, Experimental, and Conceptual Problems (Springer, 2000), pp. 1-17.
[9] Schlosshauer, M., Phys. Rep.831 (2019) 1.
[10] Beau, M., Kiukas, J., Egusquiza, I. L. and Del Campo, A., Phys. Rev. Lett.119 (2017) 130401.
[11] Harraz, S., Yang, J., Li, K. and Cong, S., Optim. Control Appl. Methods38 (2016) 744.
[12] Wiseman, H. M. and Milburn, G. J., Quantum Measurement and Control (Cambridge University Press, 2009). · Zbl 1350.81004
[13] Busch, P., Heinonen, T. and Lahti, P., Phys. Lett. A320 (2004) 261. · Zbl 1065.81510
[14] Sciarrino, F., Ricci, M., De Martini, F., Filip, R. and Mišta, L. Jr, Phys. Rev. Lett.96 (2006) 20408.
[15] Hatridge, M., Shankar, S., Mirrahimi, M., Schackert, F., Geerlings, K., Brecht, T., Sliwa, K. M., Abdo, B., Frunzio, L. and Girvin, S. M., Science339 (2013) 178. · Zbl 1355.81024
[16] Møller, C. B., Thomas, R. A., Vasilakis, G., Zeuthen, E., Tsaturyan, Y., Balabas, M., Jensen, K., Schliesser, A., Hammerer, K. and Polzik, E. S., Nature547 (2017) 191.
[17] Aharonov, Y., Albert, D. Z. and Vaidman, L., Phys. Rev. Lett.60 (1988) 1351.
[18] Terashima, H., Phys. Rev. A93 (2016) 22104.
[19] Lundeen, J. S. and Bamber, C., Phys. Rev. Lett.108 (2012) 70402.
[20] Korotkov, A. N. and Averin, D. V., Phys. Rev. B64 (2001) 165310.
[21] Xu, Y., Shi, L., Guan, T., Guo, C., Li, D., Yang, Y., Wang, X., Xie, L., He, Y. and Xie, W., Opt. Exp.26 (2018) 21119.
[22] Aharonov, Y. and Vaidman, L., Phys. Rev. A41 (1990) 11.
[23] Aharonov, Y. and Vaidman, L., The two-state vector formalism: An updated review, in Time in Quantum Mechanics (Springer, 2008), pp. 399-447.
[24] Liao, X.-P., Yuan, Y. and Rong, M.-S., Quantum Inf. Process.20 (2021) 1, https://doi.org/10.1007/s11128-021-03229-3.
[25] Yan, Y., Zou, J., Wang, C.-Q., Xu, B.-M., Li, H. and Shao, B., Eur. Phys. J. D69 (2015) 154.
[26] Zong, X.-L., Du, C.-Q., Yang, M., Yang, Q. and Cao, Z.-L., Phys. Rev. A90 (2014) 62345.
[27] Kim, Y. S., Lee, J. C., Kwon, O. and Kim, Y. H., Pacific Rim Conf. Lasers Electro-Opt. CLEO — Tech. Dig.8 (2013) 117, https://doi.org/10.1109/CLEOPR.2013.6600351.
[28] Harraz, S. and Cong, S., Nieto, J. J., Eur. Phys. J. Plus136 (2021) 1, https://doi.org/10.1140/epjp/s13360-021-01861-7.
[29] Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000). · Zbl 1049.81015
[30] Giovannetti, V., Lloyd, S. and Maccone, L., Science306 (2004) 1330.
[31] Chaves, R., Brask, J. B., Markiewicz, M., Kołodyński, J. and Acín, A., Phys. Rev. Lett.111 (2013) 120401.
[32] Lidar, D. A., Chuang, I. L. and Whaley, K. B., Phys. Rev. Lett.81 (1998) 2594.
[33] Kempe, J., Bacon, D., Lidar, D. A. and Whaley, K. B., Phys. Rev. A63 (2001) 42307.
[34] Kwiat, P. G., Berglund, A. J., Altepeter, J. B. and White, A. G., Science290 (2000) 498.
[35] Steane, A. M., Phys. Rev. Lett.77 (1996) 793. · Zbl 0944.81505
[36] Cramer, J., Kalb, N., Rol, M. A., Hensen, B., Blok, M. S., Markham, M., Twitchen, D. J., Hanson, R. and Taminiau, T. H., Nat. Commun.7 (2016) 11526.
[37] Ofek, N., Petrenko, A., Heeres, R., Reinhold, P., Leghtas, Z., Vlastakis, B., Liu, Y., Frunzio, L., Girvin, S. M. and Jiang, L., Nature536 (2016) 441.
[38] Katz, N., Neeley, M., Ansmann, M., Bialczak, R. C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A. N. and Martinis, J. M., Phys. Rev. Lett.101 (2008) 200401.
[39] Li, Y. L., Zu, C. J. and Wei, D. M., Quantum Inf. Process.18 (2019) 1, https://doi.org/10.1007/s11128-018-2114-4.
[40] Korotkov, A. N. and Keane, K., Phys. Rev. A81 (2010) 40103.
[41] Wang, C., Xu, B., Zou, J., He, Z., Yan, Y., Li, J. and Shao, B., Phys. Rev. A89 (2014) 032303, https://doi.org/10.1103/PhysRevA.89.032303.
[42] Harraz, S. and Cong, S., IEEE J. Sel. Top. Quantum Electron.26 (2020) 1, https://doi.org/10.1109/JSTQE.2020.2969574.
[43] Gillett, G. G., Dalton, R. B., Lanyon, B. P., Almeida, M. P., Barbieri, M., Pryde, G. J., O’Brien, J. L., Resch, K. J., Bartlett, S. D. and White, A. G., Phys. Rev. Lett.104 (2010) 3, https://doi.org/10.1103/PhysRevLett.104.080503.
[44] Brańczyk, A. M., Mendonça, P. E. M. F., Gilchrist, A., Doherty, A. C. and Bartlett, S. D., Phys. Rev. A75 (2007) 1, https://doi.org/10.1103/PhysRevA.75.012329.
[45] Knill, E., Laflamme, R. and Milburn, G. J., Nature409 (2001) 46.
[46] Larsen, M. V., Guo, X. and Breum, C. R., Neergaard-Nielsen, J. S. and Andersen, U. L., Nat. Phys.17 (2021) 1.
[47] Sahling, S., Remenyi, G., Paulsen, C., Monceau, P., Saligrama, V., Marin, C., Revcolevschi, A., Regnault, L. P., Raymond, S. and Lorenzo, J. E., Nat. Phys.11 (2015) 255.
[48] Xu, X. M., Cheng, L. Y., Liu, A. P., Su, S. L., Wang, H. F. and Zhang, S., Quantum Inf. Process.14 (2015) 4147, https://doi.org/10.1007/s11128-015-1111-0.
[49] Salles, A., de Melo, F., Almeida, M. P., Hor-Meyll, M., Walborn, S. P., Ribeiro, P. H. S. and Davidovich, L., Phys. Rev. A78 (2008) 22322.
[50] Yamamoto, N., Nurdin, H. I., James, M. R. and Petersen, I. R., Phys. Rev. A78 (2008) 42339.
[51] Bergou, J. A., J. Mod. Opt.57 (2010) 160. · Zbl 1190.81014
[52] Li, Z., Han, D., Liu, C. and Gao, F., Quantum Inf. Process.20 (2021) 1. · Zbl 1509.81399
[53] Bennett, C. H., Science257 (1992) 752.
[54] Wang, L., Zhou, Y.-Y., Zhou, X.-J., Chen, X. and Zhang, Z., Quantum Inf. Process.18 (2019) 1. · Zbl 1417.81118
[55] Harraz, S., Cong, S. and Kuang, S., J. Syst. Sci. Complex.32(5) (2019) 1264. · Zbl 1425.81065
[56] Wang, S.-C., Yu, Z.-W., Zou, W.-J. and Wang, X.-B., Phys. Rev. A89 (2014) 22318.
[57] Demkowicz-Dobrzański, R. and Maccone, L., Phys. Rev. Lett.113 (2014) 250801.
[58] Fan, L. and Zubairy, M. S., J. Phys. B At. Mol. Opt. Phys.49 (2016) 175504, https://doi.org/10.1088/0953-4075/49/23/235504.
[59] Konrad, T. and Scherer, A., Phys. Rev. A63 (2000) 1.
[60] Pegg, D. T., Contemp. Phys.30 (1989) 101.
[61] Harraz, S., Cong, S. and Shuang, F., Quantum noise protection via weak measurement for quantum mixed states, 2018 IEEE 7th Data Driven Control and Learning Systems Conf.Enshi, China, , 2018, pp. 302-307.
[62] Wootters, W. K., Phys. Rev. Lett.80 (1998) 2245. · Zbl 1368.81047
[63] Wang, Q. and Li, W. J., Laser Phys.29 (2019) 105202, https://doi.org/10.1088/1555-6611/ab41ed.
[64] Maleki, Y. and Zheltikov, A. M., Laser Phys. Lett.15 (2018) 56201.
[65] Li, W.-J., Zhao, Y.-H. and Leng, Y., Laser Phys.29 (2019) 65204.
[66] Basit, A., Badshah, F., Ali, H. and Ge, G.-Q., Europhys. Lett.118 (2017) 30002.
[67] Chen, Q. and Xu, J., Ann. Phys.533 (2021) 2000463.
[68] Wang, M., Xia, Y., Li, Y., Yang, Y., Cao, L., Liu, X., Wang, X., Zhang, Q. and Zhao, J., Int. J. Theor. Phys.60 (2021) 337.
[69] Wang, M.-J., Xia, Y.-J., Yang, Y., Cao, L.-Z., Zhang, Q.-W. and Zhao, J.-Q., Chin. Phys. B29 (2020) 110307.
[70] He, Z., Yao, C. and Zou, J., Phys. Rev. A — At. Mol. Opt. Phys.88 (2013) 1, https://doi.org/10.1103/PhysRevA.88.044304.
[71] Cheong, Y. W. and Lee, S. W., Phys. Rev. Lett.109 (2012) 150402, https://doi.org/10.1103/PhysRevLett.109.150402.
[72] Chen, G., Zou, Y., Xu, X.-Y., Tang, J.-S., Li, Y.-L., Xu, J.-S., Han, Y.-J., Li, C.-F., Guo, G.-C. and Ni, H.-Q., Phys. Rev. X4 (2014) 21043.
[73] Lim, H.-T., Ra, Y.-S., Hong, K.-H., Lee, S.-W. and Kim, Y.-H., Phys. Rev. Lett.113 (2014) 20504.
[74] Lee, S.-W., Kim, J. and Nha, H., Quantum5 (2021) 414.
[75] Kim, Y.-S., Cho, Y.-W., Ra, Y.-S. and Kim, Y.-H., Opt. Exp.17 (2009) 11978.
[76] Lee, J.-C., Jeong, Y.-C., Kim, Y.-S. and Kim, Y.-H., Opt. Exp.19 (2011) 16309.
[77] Korotkov, A. N. and Jordan, A. N., Phys. Rev. Lett.97 (2006) 166805.
[78] Schindler, P., Monz, T., Nigg, D., Barreiro, J. T., Martinez, E. A., Brandl, M. F. and Chwalla, M., Hennrich, M. and Blatt, R., Phys. Rev. Lett.110 (2013) 70403.
[79] Yao, C., Ma, Z. H., Chen, Z. H. and Serafini, A., Phys. Rev. A — At. Mol. Opt. Phys.86 (2012) 1, https://doi.org/10.1103/PhysRevA.86.022312.
[80] Man, Z.-X., Xia, Y.-J. and An, N. B., Phys. Rev. A86 (2012) 12325.
[81] Man, Z.-X., Xia, Y.-J. and An, N. B., Phys. Rev. A86 (2012) 52322.
[82] Sun, Q., Al-Amri, M., Davidovich, L. and Zubairy, M. S., Phys. Rev. A82 (2010) 52323.
[83] Lim, H.-T., Lee, J.-C., Hong, K.-H. and Kim, Y.-H., Opt. Exp.22 (2014) 19055.
[84] Younes, A., Ann. Phys. (N.Y.)380 (2017) 93. · Zbl 1365.68262
[85] Zhang, Y.-J., Han, W., Fan, H. and Xia, Y.-J., Ann. Phys. (N.Y.)354 (2015) 203. · Zbl 1377.81029
[86] Yang, G., Lian, B.-W. and Nie, M., Chin. Phys. B25 (2016) 80310.
[87] Xiang-Ping, L., Mao-Fa, F., Jian-Shu, F. and Qian-Quan, Z., Chin. Phys. B23 (2013) 20304.
[88] Wang, Q. and He, Z., Int. J. Theor. Phys.58 (2019) 114. · Zbl 1412.81192
[89] Yang, G., Lian, B.-W., Nie, M. and Jin, J., Chin. Phys. B26 (2017) 40305.
[90] Li, Y.-L., Huang, J., Xu, Z. and Xiao, X., Quantum Inf. Process.16 (2017) 1-10. · Zbl 1387.81226
[91] Peng, J.-Y. and Xiang, Y., Opt. Commun.499 (2021) 127285.
[92] Li, W., He, Z. and Wang, Q., Int. J. Theor. Phys.56 (2017) 2813. · Zbl 1379.81025
[93] Pramanik, T. and Majumdar, A. S., Phys. Lett. A377 (2013) 3209. · Zbl 1295.81032
[94] Li, Y.-L., Sun, F., Yang, J. and Xiao, X., Quantum Inf. Process.20 (2021) 1. · Zbl 1509.81179
[95] Harraz, S., Cong, S. and Nieto, J. J., IEEE Commun. Lett.26 (2021) 528, https://doi.org/10.1109/LCOMM.2021.3138854.
[96] Xiao, X., Yao, Y., Li, Y.-L. and Xie, Y.-M., Eur. Phys. J. Plus135 (2020) 1.
[97] Roy, S., Bera, A., S. De Mal, Sen, A. and Sen, U., Phys. Lett. A392 (2021) 127143. · Zbl 07409430
[98] Singh, U., Mishra, U. and Dhar, H. S., Ann. Phys. (N. Y.)350 (2014) 50. · Zbl 1344.81049
[99] Xiao, X. and Feng, M., Phys. Rev. A83 (2011) 2, https://doi.org/10.1103/PhysRevA.83.054301.
[100] Yang, Y., Zhang, X. Y., Ma, J. and Yi, X. X., Phys. Rev. A — At. Mol. Opt. Phys.87 (2013) 1, https://doi.org/10.1103/PhysRevA.87.012333.
[101] Yan, Y., Zou, J., Xu, B., Li, J. and Shao, B., Phys. Rev. A88 (2013) 032320, https://doi.org/10.1103/PhysRevA.88.032320.
[102] Yan, Y., Jian, Z., Lu, W., Bao-Ming, X., Chao-Quan, W. and Bin, S., Commun. Theor. Phys.63 (2015) 149. · Zbl 1308.81017
[103] Yang, Y.-G., Chen, N., Yang, Y.-L., Zhou, Y.-H. and Shi, W.-M., Quantum Inf. Process.19 (2020) 1. · Zbl 1508.81871
[104] Xi, Z. and Jin, G., Performance comparison between classical and quantum control for a simple quantum system, Phys. A Stat. Mech. Appl.387 (2008) 1056, https://doi.org/10.1016/j.physa.2007.10.019.
[105] Wakamura, H., Kawakubo, R. and Koike, T., Phys. Rev. A96 (2017) 1, https://doi.org/10.1103/PhysRevA.96.022325.
[106] Wakamura, H., Phys. Rev. A — At. Mol. Opt. Phys.022321 (2017) 1, https://doi.org/10.1103/PhysRevA.95.022321.
[107] Harraz, S., Cong, S. and Li, K., Quantum Inf. Process.19 (2020) 1.
[108] Liao, Z., Al-Amri, M. and Zubairy, M. S., Proc. SPIE8875 (2013) 887506, https://doi.org/10.1117/12.2023241.
[109] Guo, L. S., Xu, B. M., Zou, J., Wang, C. Q., Li, H., Li, J. G. and Shao, B., Phys. Rev. A — At. Mol. Opt. Phys.91 (2015) 1, https://doi.org/10.1103/PhysRevA.91.022321.
[110] Cao, Y., Tian, G., Zhang, Z., Yang, Y., Wen, Q. and Gao, F., Phys. Rev. A032313 (2017) 1, https://doi.org/10.1103/PhysRevA.95.032313.
[111] Chen, Y., Zou, J., Long, Z. W. and Shao, B., Sci. Rep.7 (2017) 1, https://doi.org/10.1038/s41598-017-04726-1.
[112] Zou, X. L. J. and Shao, B., Quantum Inf. Process.17 (2018) 1, https://doi.org/10.1007/s11128-018-1888-8.
[113] Bell, J. S., Phys. Phys. Fiz.1 (1964) 195.
[114] Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. and Wehner, S., Rev. Mod. Phys.86 (2014) 419.
[115] Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S. and Scarani, V., Phys. Rev. Lett.98 (2007) 230501.
[116] Bardyn, C.-E., Liew, T. C. H., Massar, S., McKague, M. and Scarani, V., Phys. Rev. A80 (2009) 62327.
[117] Pironio, S., Acín, A., Massar, S., de La Giroday, A. B., Matsukevich, D. N., Maunz, P. and Olmschenk, S., Hayes, D., Luo, L. and Manning, T. A., Nature464 (2010) 1021.
[118] Rabelo, R., Ho, M., Cavalcanti, D., Brunner, N. and Scarani, V., Phys. Rev. Lett.107 (2011) 50502.
[119] Qi, B. and Guo, L., Syst. Control Lett.59 (2010) 333, https://doi.org/10.1016/j.sysconle.2010.03.008. · Zbl 1198.93035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.