×

Recycling the resource: sequential usage of shared state in quantum teleportation with weak measurements. (English) Zbl 07409430

Summary: Complete measurements, while providing maximal information gain, result in destruction of the shared entanglement. In the standard teleportation scheme, the sender’s measurement on the shared entangled state between the sender and the receiver has that consequence. We propose here a teleportation scheme involving weak measurements which can sustain entanglement up to a certain level so that the reusability of the shared resource state for reattempting teleportation is possible. The measurements are chosen in such a way that it is weak enough to retain entanglement and hence can be reused for quantum tasks, yet adequately strong to ensure quantum advantage in the protocol. In this scenario, we report that at most six sender-receiver duos can reuse the state for reattempting teleportation, when the initial shared state is entangled in a finite neighborhood of the maximally entangled state and for a suitable choice of weak measurements. However, we observe that the reattempt number decreases with the decrease in the entanglement of the initial shared state. Among the weakening strategies studied, Bell measurement admixed with white noise performs better than any other low-rank weak measurements in this situation.

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter

References:

[1] Bennett, C. H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W. K., Phys. Rev. Lett., 70, 1895 (1993) · Zbl 1051.81505
[2] Verstraete, F.; Verschelde, H., Phys. Rev. Lett., 90, Article 097901 pp. (2003)
[3] Horodecki, M.; Horodecki, P.; Horodecki, R., Phys. Rev. A, 60, 1888 (1999) · Zbl 1005.81505
[4] Bang, J.; Ryu, J.; Kaszlikowski, D., J. Phys. A, Math. Theor., 51, Article 135302 pp. (2018) · Zbl 1390.81092
[5] Braunstein, S. L.; Kimble, H. J., Phys. Rev. Lett., 80, 869 (1998); Pirandola, S.; Eisert, J.; Weedbrook, C.; Furusawa, A.; Braunstein, S. L., Nat. Photonics, 9, 641 (2015)
[6] Furusawa, A.; Sørensen, J. L.; Braunstein, S. L.; Fuchs, C. A.; Kimble, H. J.; Polzik, E. S., Science, 282, 706 (1998); Bowen, W. P., Phys. Rev. A, 67, Article 032302 pp. (2003); Zhang, T. C.; Goh, K. W.; Chou, C. W.; Lodahl, P.; Kimble, H. J., Phys. Rev. A, 67, Article 033802 pp. (2003); Takei, N.; Yonezawa, H.; Aoki, T.; Furusawa, A., Phys. Rev. Lett., 94, Article 220502 pp. (2005); Yonezawa, H.; Braunstein, S. L.; Furusawa, A., Phys. Rev. Lett., 99, Article 110503 pp. (2007); Takei, N., Phys. Rev. A, 72, Article 042304 pp. (2005); Lee, N., Science, 332, 330 (2011); Yukawa, M.; Benichi, H.; Furusawa, A., Phys. Rev. A, 77, Article 022314 pp. (2008)
[7] Kimble, H. J., Nature, 453, 1023 (2008)
[8] Murao, M.; Plenio, M.; Popescu, S.; Vedral, V.; Knight, P. L., Phys. Rev. A, 57, 4075 (1998); Murao, M.; Jonathan, D.; Plenio, M. B.; Vedral, V., Phys. Rev. A, 59, 156 (1999); Murao, M.; Vedral, V., Phys. Rev. Lett., 86, 352 (2001); Zhao, Z.; Zhang, A.-N.; Zhou, X.-Q.; Chen, Y.-A.; Lu, C.-Y.; Karlsson, A.; Pan, J.-W., Phys. Rev. Lett., 95, Article 030502 pp. (2005); Koike, S.; Takahashi, H.; Yonezawa, H.; Takei, N.; Braunstein, S. L.; Aoki, T.; Furusawa, A., Phys. Rev. Lett., 96, Article 060504 pp. (2006); Radmark, M.; Żukowski, M.; Bourennane, M., New J. Phys., 11, Article 103016 pp. (2009); Sen(De), A.; Sen, U., Phys. Rev. A, 81, Article 012308 pp. (2010); Sen(De), A.; Sen, U., Phys. News, 40, 17 (2010), For a recent review on quantum communication, see e.g.; Lee, J.; Ji, S.-W.; Park, J.; Nha, H., Phys. Rev. A, 94, Article 062318 pp. (2016); Cunha, M. M.; Fonseca, E. A.; Parisio, F., Quantum Inf. Process., 16, 254 (2017)
[9] Briegel, H.-J.; Dür, W.; Cirac, J. I.; Zoller, P., Phys. Rev. Lett., 81, 5932 (1998)
[10] Gottesman, D.; Chuang, I. L., Nature, 402, 390 (1999)
[11] Raussendorf, R.; Briegel, H.-J., Phys. Rev. Lett., 86, 5188 (2001)
[12] Bouwmeester, D.; Pan, J.-W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A., Nature, 390, 575 (1997); Boschi, D.; Branca, S.; De Martini, F.; Hardy, L.; Popescu, S., Phys. Rev. Lett., 80, 1121 (1998); Ma, X.-S.; Herbst, T.; Scheidl, T.; Wang, D.; Kropatschek, S.; Naylor, W.; Wittmann, B.; Mech, A.; Kofler, J.; Anisimova, E.; Makarov, V.; Jennewein, T.; Ursin, R.; Zeilinger, A., Nature, 489, 269 (2012)
[13] Pan, J.-W.; Chen, Z.-B.; Lu, C.-Y.; Weinfurter, H.; Zeilinger, A.; Żukowski, M., Rev. Mod. Phys., 84, 777 (2012)
[14] Kim, Y.-H.; Kulik, S. P.; Shih, Y., Phys. Rev. Lett., 86, 1370 (2001); Yin, J.; Ren, J.-G.; Lu, H.; Cao, Y.; Yong, H.-L.; Wu, Y.-P.; Liu, C.; Liao, S.-K.; Zhou, F.; Jiang, Y.; Cai, X.-D.; Xu, P.; Pan, G.-S.; Jia, J.-J.; Huang, Y.-M.; Yin, H.; Wang, J.-Y.; Chen, Y.-A.; Peng, C.-Z.; Pan, J.-W., Nature, 488, 185 (2012)
[15] Yin, J.; Cao, Y.; Li, Y.-H.; Liao, S.-K.; Zhang, L.; Ren, J.-G.; Cai, W.-Q.; Liu, W.-Y.; Li, B.; Dai, H.; Li, G.-B.; Lu, Q.-M.; Gong, Y.-H.; Xu, Y.; Li, S.-L.; Li, F.-Z.; Yin, Y.-Y.; Jiang, Z.-Q.; Li, M.; Jia, J.-J.; Ren, G.; He, D.; Zhou, Y.-L.; Zhang, X.-X.; Wang, N.; Chang, X.; Zhu, Z.-C.; Liu, N.-L.; Chen, Y.-A.; Lu, C.-Y.; Shu, R.; Peng, C.-Z.; Wang, J.-Y.; Pan, J.-W., Science, 356, 1140 (2017); Liao, S.-K.; Takenaka, H.; Carrasco-Casado, A.; Fujiwara, M.; Kitamura, M.; Sasaki, M.; Toyoshima, M., Nat. Photonics, 11, 502 (2017)
[16] Nielsen, M. A.; Knill, E.; Laflamme, R., Nature, 396, 52 (1998)
[17] Barrett, M. D., Nature, 429, 737 (2004)
[18] Riebe, M.; Häffner, H.; Roos, C. F.; Hänsel, W.; Benhelm, J.; Lancaster, G. P.T.; Körber, T. W.; Becher, C.; Schmidt-Kaler, F.; James, D. F.V.; Blatt, R., Nature, 429, 734 (2004); Olmschenk, S.; Matsukevich, D. N.; Maunz, P.; Hayes, D.; Duan, L. M.; Monroe, C., Science, 323, 486 (2009)
[19] Solmeyer, N.; Li, X.; Quraishi, Q., Phys. Rev. A, 93, Article 042301 pp. (2016)
[20] Steffen, L.; Salathe, Y.; Oppliger, M.; Kurpiers, P.; Baur, M.; Lang, C.; Eichler, C.; Puebla-Hellmann, G.; Fedorov, A.; Wallraff, A., Nature, 500, 319 (2013)
[21] Sherson, J.; Krauter, H.; Olsson, R. K.; Julsgaard, B.; Hammerer, K.; Cirac, I.; Polzik, E. S., Nature, 443, 557 (2006)
[22] Fuchs, C. A.; Peres, A., Phys. Rev. A, 53, 2038 (1996); Banaszek, K., Phys. Rev. Lett., 86, 1366 (2001)
[23] Busch, P.; Lahti, P. J.; Mittelstaedt, P., The Quantum Theory of Measurement (1996), Springer: Springer Berlin, Germany; Busch, P., Phys. Rev. D, 33, 2253 (1986) · Zbl 0868.46051
[24] Gisin, N., Entropy, 21, 325 (2019)
[25] Silva, R.; Gisin, N.; Guryanova, Y.; Popescu, S., Phys. Rev. Lett., 114, Article 250401 pp. (2015)
[26] Mal, S.; Majumdar, A.; Home, D., Mathematics, 4, 48 (2016) · Zbl 1360.81039
[27] Das, D.; Ghosal, A.; Sasmal, S.; Mal, S.; Majumdar, A. S., Phys. Rev. A, 99, Article 022305 pp. (2019)
[28] Bera, A.; Mal, S.; Sen(De), A.; Sen, U., Phys. Rev. A, 98, Article 062304 pp. (2018)
[29] Popescu, S., Phys. Rev. Lett., 72, 797 (1994) · Zbl 0973.81506
[30] Massar, S.; Popescu, S., Phys. Rev. Lett., 74, 1259 (1995) · Zbl 1020.81517
[31] Wootters, W. K., Phys. Rev. Lett., 80, 2245 (1998) · Zbl 1368.81047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.