×

Optimal protection of quantum coherence in noisy environment. (English) Zbl 1358.81057

Summary: In this paper, we analyse the quantum coherence dynamics of a single qubit locally interacting with a zero-temperature reservoir. We compare the behaviors of quantum coherence in Markovian and non-Markovian regime. We find that the system coherence is transferred to the reservoir and decreases with time. In non-Markovian regime, quantum coherence exists instantaneous disappearance at some discrete time points. Furthermore, we propose an optimal scheme to protect quantum coherence by executing prior weak measurement and post-measurement reversal. It is worth noticing that the scheme can get better quantum coherence with the larger weak measurement strength, while at the cost of reducing success probability.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81S22 Open systems, reduced dynamics, master equations, decoherence
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI

References:

[1] Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963) · Zbl 1371.81166 · doi:10.1103/PhysRev.131.2766
[2] Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963) · Zbl 0113.21305 · doi:10.1103/PhysRevLett.10.277
[3] Scully, M.O.: Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67, 1855 (1991) · doi:10.1103/PhysRevLett.67.1855
[4] Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge, England (1995) · doi:10.1017/CBO9781139644105
[5] Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005) · doi:10.1103/PhysRevLett.94.173602
[6] Vogel, W., Sperling, J.: Unified quantification of nonclassicality and entanglement. Phys. Rev. A 89, 052302 (2014) · doi:10.1103/PhysRevA.89.052302
[7] Mraz, M., Sperling, J., Vogel, W., Hage, B.: Witnessing the degree of nonclassicality of light. Phys. Rev. A 90, 03382 (2014) · doi:10.1103/PhysRevA.90.033812
[8] Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., LutzNanoscale, E.: Heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014) · doi:10.1103/PhysRevLett.112.030602
[9] Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014) · doi:10.1103/PhysRevLett.113.150402
[10] Correa, L.A., Palao, J.P., Alonso, D., Adesso, G.: Quantum-enhanced absorption refrigerators. Sci. Rep. 4, 3949 (2014) · doi:10.1038/srep03949
[11] Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015) · doi:10.1038/ncomms8689
[12] Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015) · doi:10.1038/ncomms7383
[13] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, England (2000) · Zbl 1049.81015
[14] Baumgratz, T., Cramer, M., Plenio, M.B.: Quanfifying coherence. Phys. Rev. Lett. 113, 140401 (2014) · doi:10.1103/PhysRevLett.113.140401
[15] Deveaud-Plédran, B., Quattropani, A., Schwendimann, P.: Quantum coherence in solid state systems. In: Proceedings of the International School of Physics Enrico Fermi. ISBN: 978-1-60750-039-1, vol. 171. IOS Press, Amsterdam (2009)
[16] Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: From solid-state to biological systems. Sci. Rep. 2, 885 (2012)
[17] Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Manc̆al, T., Cheng, Y.C., Blakenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature (London) 446, 782 (2007) · doi:10.1038/nature05678
[18] Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008) · doi:10.1088/1367-2630/10/11/113019
[19] Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009) · doi:10.1088/1367-2630/11/3/033003
[20] Caruso, F., Chin, A., Datta, A., Huelga, S., Plenio, M.: Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport. J. Chem. Phys. 131, 105106 (2009) · doi:10.1063/1.3223548
[21] Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature (London) 463, 644 (2010) · doi:10.1038/nature08811
[22] Scholes, G.D., Fleming, G.R., Olaya-Castro, A., van Grondelle, R.: Lessons from nature about solar light harvesting. Nat. Chem. 3, 763 (2011) · doi:10.1038/nchem.1145
[23] Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013) · doi:10.1038/nphys2474
[24] Chin, A.W., Prior, J., Rosenbach, R., Caycedo-Soler, F., Huelga, S.F., Plenio, M.B.: The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigmentCprotein complexes. Nat. Phys. 9, 113 (2013) · doi:10.1038/nphys2515
[25] Cai, J., Plenio, M.B.: Chemical compass model for avian magnetoreception as a quantum coherent device. Phys. Rev. Lett. 111, 230503 (2013) · doi:10.1103/PhysRevLett.111.230503
[26] O’Reilly, E.J., Olaya-Castro, A.: Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat. Commun. 5, 3012 (2014)
[27] Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014) · Zbl 1451.81078 · doi:10.1088/1367-2630/16/3/033007
[28] Girolami, D.: Observable measure of Quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014) · doi:10.1103/PhysRevLett.113.170401
[29] Smyth, C., Scholes, G.D.: Method of developing analytical multipartite delocalization measures for mixed W-like states. Phys. Rev. A 90, 032312 (2014) · doi:10.1103/PhysRevA.90.032312
[30] Pires, D.P., Celeri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015) · doi:10.1103/PhysRevA.91.042330
[31] Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015) · doi:10.1103/PhysRevLett.115.020403
[32] Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016) · doi:10.1103/PhysRevA.93.012110
[33] Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015) · doi:10.1103/PhysRevLett.114.210401
[34] Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015) · doi:10.1103/PhysRevA.92.032331
[35] Chanda, T., Bhattacharya, S.: Delineating incoherent non-Markovian dynamics using quantum coherence. Ann. Phys. 366, 1 (2016) · Zbl 1342.81032 · doi:10.1016/j.aop.2016.01.004
[36] Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ’hidden’ non-locality. Nature 409, 1014 (2001) · doi:10.1038/35059017
[37] Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature (London) 423, 417 (2003) · doi:10.1038/nature01623
[38] Dong, R., et al.: Experimental entanglement distillation of mesoscopic quantum states. Nat. Phys. 4, 919 (2008) · doi:10.1038/nphys1112
[39] Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008) · Zbl 1228.81091 · doi:10.1103/PhysRevLett.100.090503
[40] Kondo, Y., Matsuzaki, Y., Matsushima, K., Filgueiras, J.G.: Using the quantum Zeno effect for suppression of decoherence. New. J. Phys. 18, 013033 (2016) · Zbl 1456.81280 · doi:10.1088/1367-2630/18/1/013033
[41] Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherencefree subspaces. Science 290, 498 (2000) · doi:10.1126/science.290.5491.498
[42] Qin, W., Wang, C., Zhang, X.: Protected quantum-state transfer in decoherence-free subspaces. Phys. Rev. A 91, 042303 (2015) · doi:10.1103/PhysRevA.91.042303
[43] Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012) · doi:10.1038/nphys2178
[44] He, J., Ye, L.: Protecting entanglement under depolarizing noise environment by using weak measurements. Physica A 419, 7 (2015) · doi:10.1016/j.physa.2014.09.051
[45] He, J., Xu, S., Ye, L.: Inducing multipartite entanglement revival in dissipative environment by means of prior quantum uncollapsing measurements. Physica A 438, 66 (2015) · Zbl 1400.81028 · doi:10.1016/j.physa.2015.06.025
[46] Xu, S., He, J., Song, X.K., Shi, J.D., Ye, L.: Optimized decoherence suppression of two qubits in independent non-Markovian environments using weak measurement and quantum measurement reversal. Quantum Inf. Process. 14, 755 (2015) · Zbl 1311.81044 · doi:10.1007/s11128-014-0871-2
[47] Zhang, Y.J., Han, W., Fan, H., Xia, Y.J.: Enhancing entanglement trapping by weak measurement and quantum measurement reversal. Ann. Phys. 354, 203 (2015) · Zbl 1377.81029 · doi:10.1016/j.aop.2014.12.010
[48] He, J., Ding, Z.Y., Ye, L.: Enhancing quantum Fisher information by utilizing uncollapsing measurements. Physica A 457, 598 (2016) · Zbl 1400.81048 · doi:10.1016/j.physa.2016.04.001
[49] Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian Effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007) · doi:10.1103/PhysRevLett.99.160502
[50] Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008) · doi:10.1103/PhysRevA.77.032342
[51] Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Non-markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010) · doi:10.1103/PhysRevA.81.014101
[52] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford, New York (2002) · Zbl 1053.81001
[53] Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006) · doi:10.1103/PhysRevLett.97.166805
[54] Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008) · doi:10.1103/PhysRevLett.101.200401
[55] Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009) · doi:10.1364/OE.17.011978
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.