×

The Markov-quantile process attached to a family of marginals. (Le processus Markov-quantile attaché à une famille de marges.) (English. French summary) Zbl 1494.60045

For any \(\alpha\in(0,1)\), the \(\alpha\)-quantile of a measure \(\mu\) on \(\mathbb{R}\) is the infimum number \(x\) such that \(\mu((-\infty,x])\geq \alpha\). One associates to a family \((\mu_t)_{t\in\mathbb{R}}\) of measures on \(\mathbb{R}\) the process of their quantiles, defined on the interval \((0,1)\) with the Lebesgue measure, with chance element \(\alpha\). (One talks of the quantile process associated with the family \((\mu_t)_{t\in\mathbb{R}}\).) The authors prove that there is a unique Markovian process on the probability space \((0,1)\) that has \(\mu_t\) as its one dimensional marge and whose finite dimensional marges are given by a twicked version of the quantile process whose past and future at a finite number of times are made independent of one another. This process is called ‘Markov quantile’. It is proved to be almost surely increasing if the family \((\mu_t)_{t\in\mathbb{R}}\) is increasing for the stochastic order.

MSC:

60G44 Martingales with continuous parameter
60A10 Probabilistic measure theory
28A33 Spaces of measures, convergence of measures
60J25 Continuous-time Markov processes on general state spaces
35Q35 PDEs in connection with fluid mechanics
49J55 Existence of optimal solutions to problems involving randomness

References:

[1] Albin, J. M. P., A continuous non-Brownian motion martingale with Brownian motion marginal distributions, Statist. Probab. Lett., 78, 6, 682-686 (2008) · Zbl 1137.60325 · doi:10.1016/j.spl.2007.09.031
[2] Ambrosio, L.; Gigli, N.; Savaré, G., Gradient flows in metric spaces and in the space of probability measures (2008), Birkhäuser Verlag: Birkhäuser Verlag, Basel · Zbl 1145.35001
[3] Beiglböck, Mathias; Huesmann, Martin; Stebegg, Florian, Séminaire de Probabilités XLVIII, 2168, Root to Kellerer, 1-12 (2016), Springer: Springer, Cham · Zbl 1370.60083 · doi:10.1007/978-3-319-44465-9_1
[4] Beiglböck, Mathias; Juillet, Nicolas, On a problem of optimal transport under marginal martingale constraints, Ann. Probab., 44, 1, 42-106 (2016) · Zbl 1348.49045 · doi:10.1214/14-AOP966
[5] Beiglböck, Mathias; Juillet, Nicolas, Shadow couplings, Trans. Amer. Math. Soc., 374, 7, 4973-5002 (2021) · Zbl 1484.60051 · doi:10.1090/tran/8380
[6] Benamou, Jean-David; Brenier, Yann, Monge Ampère equation: applications to geometry and optimization (Deerfield Beach, FL, 1997), 226, A numerical method for the optimal time-continuous mass transport problem and related problems, 1-11 (1999), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0916.65068 · doi:10.1090/conm/226/03232
[7] Billingsley, Patrick, Convergence of probability measures (1999), John Wiley & Sons Inc.: John Wiley & Sons Inc., New York · Zbl 0944.60003 · doi:10.1002/9780470316962
[8] Boubel, Charles; Juillet, Nicolas, On absolutely continuous curves in the Wasserstein space over \(\mathbb{R}\) and their representation by an optimal Markov process (2021)
[9] Brunick, Gerard; Shreve, Steven, Mimicking an Itô process by a solution of a stochastic differential equation, Ann. Appl. Probab., 23, 4, 1584-1628 (2013) · Zbl 1284.60109 · doi:10.1214/12-aap881
[10] Doeblin, W., Sur certains mouvements aléatoires discontinus, Skand. Aktuarietidskr., 22, 211-222 (1939) · JFM 65.0579.01 · doi:10.1080/03461238.1939.10419265
[11] Dupire, Bruno, Pricing with a smile, Risk, 7, 1, 18-20 (1994)
[12] Federer, H., Geometric measure theory, 153 (1969), Springer-Verlag New York Inc.: Springer-Verlag New York Inc., New York · Zbl 0176.00801
[13] Feller, William, An introduction to probability theory and its applications. Vol. I (1968), John Wiley & Sons, Inc.: John Wiley & Sons, Inc., New York-London-Sydney · Zbl 0077.12201
[14] Gyöngy, I., Mimicking the one-dimensional marginal distributions of processes having an Itô differential, Probab. Theory Relat. Fields, 71, 4, 501-516 (1986) · Zbl 0579.60043 · doi:10.1007/BF00699039
[15] Hamza, Kais; Klebaner, Fima C., A family of non-Gaussian martingales with Gaussian marginals, J. Appl. Math. Stochastic Anal., 19 p. pp. (2007) · Zbl 1152.60039 · doi:10.1155/2007/92723
[16] Henry-Labordère, Pierre; Tan, Xiaolu; Touzi, Nizar, An explicit martingale version of the one-dimensional Brenier’s theorem with full marginals constraint, Stochastic Process. Appl., 126, 9, 2800-2834 (2016) · Zbl 1346.60058 · doi:10.1016/j.spa.2016.03.003
[17] Hillion, Erwan, \(W_{1,+}\)-interpolation of probability measures on graphs, Electron. J. Probab., 19, 29 p. pp. (2014) · Zbl 1347.49077 · doi:10.1214/EJP.v19-3336
[18] Hirsch, Francis; Profeta, Christophe; Roynette, Bernard; Yor, Marc, Peacocks and associated martingales, with explicit constructions, 3 (2011), Springer: Springer, Milan · Zbl 1227.60001 · doi:10.1007/978-88-470-1908-9
[19] Hirsch, Francis; Roynette, Bernard, On \(\mathbb{R}^d\)-valued peacocks, ESAIM Probab. Statist., 17, 444-454 (2013) · Zbl 1291.60085 · doi:10.1051/ps/2012009
[20] Hirsch, Francis; Roynette, Bernard; Yor, Marc, Asymptotic Laws and Methods in Stochastics. Volume in Honour of Miklos Csorgo, 76, Kellerer’s theorem revisited, 347-363 (2015), Fields Inst. Res. Math. Sci., Toronto, ON · Zbl 1368.60045 · doi:10.1007/978-1-4939-3076-0_18
[21] Hobson, David G., Fake exponential Brownian motion, Statist. Probab. Lett., 83, 10, 2386-2390 (2013) · Zbl 1352.60061 · doi:10.1016/j.spl.2013.06.030
[22] Hobson, David G., Mimicking martingales, Ann. Appl. Probab., 26, 4, 2273-2303 (2016) · Zbl 1293.60079 · doi:10.1214/15-AAP1147
[23] Juillet, Nicolas, Séminaire de Probabilités XLVIII, 2168, Peacocks parametrised by a partially ordered set, 13-32 (2016), Springer: Springer, Cham · Zbl 1370.60082 · doi:10.1007/978-3-319-44465-9_2
[24] Juillet, Nicolas, Martingales associated to peacocks using the curtain coupling, Electron. J. Probab., 23, 29 p. pp. (2018) · Zbl 1391.60096 · doi:10.1214/18-EJP138
[25] Kallenberg, Olav, Foundations of modern probability (2002), Springer-Verlag: Springer-Verlag, New York · Zbl 0996.60001 · doi:10.1007/978-1-4757-4015-8
[26] Kamae, T.; Krengel, U., Stochastic partial ordering, Ann. Probab., 6, 6, 1044-1049 (1978) · Zbl 0392.60012 · doi:10.1214/aop/1176995392
[27] Kaminsky, K. S.; Luks, E. M.; Nelson, P. I., Strategy, nontransitive dominance and the exponential distribution, Austral. J. Statist., 26, 2, 111-118 (1984) · Zbl 0558.62016 · doi:10.1111/j.1467-842x.1984.tb01224.x
[28] Kellerer, Hans G., Markov-Komposition und eine Anwendung auf Martingale, Math. Ann., 198, 99-122 (1972) · Zbl 0229.60049 · doi:10.1007/BF01432281
[29] Kellerer, Hans G., Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Tech. Univ., Prague, 1971; dedicated to the memory of Antonín Špaček), Integraldarstellung von Dilationen, 341-374 (1973), Academia: Academia, Prague · Zbl 0283.60079
[30] Kellerer, Hans G., Order conditioned independence of real random variables, Math. Ann., 273, 507-528 (1986) · Zbl 0569.28006 · doi:10.1007/BF01450736
[31] Kellerer, Hans G., Markov property of point processes, Probab. Theory Relat. Fields, 76, 71-80 (1987) · Zbl 0608.60053 · doi:10.1007/BF00390276
[32] Léonard, Christian, Lazy random walks and optimal transport on graphs, Ann. Probab., 44, 3, 1864-1915 (2016) · Zbl 1397.60109 · doi:10.1214/15-AOP1012
[33] Lisini, Stefano, Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations, 28, 1, 85-120 (2007) · Zbl 1132.60004 · doi:10.1007/s00526-006-0032-2
[34] Lowther, George, Fitting martingales to given marginals (2008)
[35] Lowther, George, Limits of one-dimensional diffusions, Ann. Probab., 37, 1, 78-106 (2009) · Zbl 1210.60087 · doi:10.1214/08-AOP397
[36] Madan, Dilip B.; Yor, Marc, Making Markov martingales meet marginals: with explicit constructions, Bernoulli, 8, 4, 509-536 (2002) · Zbl 1009.60037
[37] Nagasawa, Masao, Schrödinger equations and diffusion theory, 86 (1993), Birkhäuser Verlag, Basel · Zbl 0780.60003 · doi:10.1007/978-3-0348-8568-3
[38] Ollivier, Yann, Ricci curvature of Markov chains on metric spaces, J. Funct. Anal., 256, 3, 810-864 (2009) · Zbl 1181.53015 · doi:10.1016/j.jfa.2008.11.001
[39] Pagès, Gilles, Séminaire de Probabilités XLV, 2078, Functional co-monotony of processes with applications to peacocks and barrier options, 365-400 (2013), Springer: Springer, Cham · Zbl 1291.60066 · doi:10.1007/978-3-319-00321-4_15
[40] Pass, Brendan, On a class of optimal transportation problems with infinitely many marginals, SIAM J. Appl. Math., 45, 4, 2557-2575 (2013) · Zbl 1278.49031 · doi:10.1137/120881427
[41] Rachev, Svetlozar T.; Rüschendorf, Ludger, Mass transportation problems. Vol. I & II (1998), Springer-Verlag: Springer-Verlag, New York · Zbl 0990.60500
[42] Rinott, Yosef; Scarsini, Marco; Yu, Yaming, A Colonel Blotto gladiator game, Math. Oper. Res., 37, 4, 574-590 (2012) · Zbl 1297.91003 · doi:10.1287/moor.1120.0550
[43] Shaked, Moshe; Shanthikumar, J. George, Stochastic orders (2007), Springer, New York · Zbl 1111.62016 · doi:10.1007/978-0-387-34675-5
[44] Strassen, V., The existence of probability measures with given marginals, Ann. Math. Statist., 36, 423-439 (1965) · Zbl 0135.18701 · doi:10.1214/aoms/1177700153
[45] Villani, C., Topics in optimal transportation, 58 (2003), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1106.90001 · doi:10.1090/gsm/058
[46] Villani, C., Optimal transport, 338 (2009), Springer-Verlag · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.