×

Peacocks parametrised by a partially ordered set. (English) Zbl 1370.60082

Donati-Martin, Catherine (ed.) et al., Séminaire de probabilités XLVIII. Cham: Springer (ISBN 978-3-319-44464-2/pbk; 978-3-319-44465-9/ebook). Lecture Notes in Mathematics 2168. Séminaire de Probabilités, 13-32 (2016).
Summary: We indicate some counterexamples to the peacock problem for families of (a) real measures indexed by a partially ordered set or (b) vectorial measures indexed by a totally ordered set. This is a contribution to an open problem of the book [F. Hirsch et al., Peacocks and associated martingales, with explicit constructions. New York, NY: Springer (2011; Zbl 1227.60001)] (Problem 7a–7b: “Find other versions of Kellerer’s theorem”).
Case (b) has been answered positively by F. Hirsch and B. Roynette [ESAIM, Probab. Stat. 17, 444–454 (2013; Zbl 1291.60085)] but the question whether a “Markovian” Kellerer theorem hold remains open. We provide a negative answer for a stronger version: A “Lipschitz-Markovian” Kellerer theorem will not exist.
In case (a) a partial conclusion is that no Kellerer theorem in the sense of the original paper [H. G. Kellerer, Math. Ann. 198, 99–122 (1972; Zbl 0229.60049)] can be obtained with the mere assumption on the convex order. Nevertheless we provide a sufficient condition for having a Markovian associate martingale. The resulting process is inspired by the quantile process obtained by using the inverse cumulative distribution function of measures \((\mu_{t})_{t\in T}\) non-decreasing in the stochastic order.
We conclude the paper with open problems.
For the entire collection see [Zbl 1359.60007].

MSC:

60G42 Martingales with discrete parameter
60G44 Martingales with continuous parameter
60B10 Convergence of probability measures
28A33 Spaces of measures, convergence of measures

References:

[1] M. Beiglböck, N. Juillet, On a problem of optimal transport under marginal martingale constraints. Ann. Probab. 44 (1), 42–106 (2016) · Zbl 1348.49045 · doi:10.1214/14-AOP966
[2] M. Beiglböck, M. Huesmann, F. Stebegg, Root to Kellerer, in Séminaire de Probabilités XLVIII, ed. by C. Donati-Martin, A. Lejay, A. Rouault. Lecture Notes in Mathematics, vol. 2168 (Springer, Berlin, 2015) · Zbl 1370.60083
[3] R. Cairoli, J.B. Walsh, Stochastic integrals in the plane. Acta Math. 134, 111–183 (1975) · Zbl 0334.60026 · doi:10.1007/BF02392100
[4] R.G. Douglas, On extremal measures and subspace density. Mich. Math. J. 11, 243–246 (1964) · Zbl 0121.33102 · doi:10.1307/mmj/1028999137
[5] J.A. Fill, M. Machida, Stochastic monotonicity and realizable monotonicity. Ann. Probab. 29 (2), 938–978 (2001) · Zbl 1015.60010 · doi:10.1214/aop/1008956698
[6] P. Henry-Labordere, X. Tan, N. Touzi, An explicit martingale version of the one-dimensional Brenier’s theorem with full marginals constraint (2014). Preprint · Zbl 1346.60058
[7] F. Hirsch, B. Roynette, On \[ \mathbb{R}^{d} \] -valued peacocks. ESAIM Probab. Stat. 17, 444–454 (2013) · Zbl 1291.60085 · doi:10.1051/ps/2012009
[8] F. Hirsch, M. Yor, Looking for martingales associated to a self-decomposable law. Electron. J. Probab. 15 (29), 932–961 (2010) · Zbl 1225.60131 · doi:10.1214/EJP.v15-786
[9] F. Hirsch, C. Profeta, B. Roynette, M. Yor, Peacocks and Associated Martingales, with Explicit Constructions. Bocconi & Springer Series (Springer, Milan, 2011) · Zbl 1227.60001 · doi:10.1007/978-88-470-1908-9
[10] F. Hirsch, B. Roynette, M. Yor, Kellerer’s theorem revisited, in Asymptotic Laws and Methods in Stochastics. Volume in Honour of Miklos Csorgo, ed. by Springer. Fields Institute Communications Series (Springer, Berlin, 2014) · Zbl 1368.60045
[11] N. Juillet, Stability of the shadow projection and the left-curtain coupling. Ann. Inst. Henri Poincaré Probab. Stat. (2016, to appear). See http://imstat.org/aihp/accepted.html · Zbl 1356.60067
[12] T. Kamae, U. Krengel, Stochastic partial ordering. Ann. Probab. 6 (6), 1044–1049 (1978) · Zbl 0392.60012 · doi:10.1214/aop/1176995392
[13] T. Kamae, U. Krengel, G.L. O’Brien, Stochastic inequalities on partially ordered spaces. Ann. Probab. 5, 899–912 (1977) · Zbl 0371.60013 · doi:10.1214/aop/1176995659
[14] H.G. Kellerer, Markov-Komposition und eine Anwendung auf Martingale. Math. Ann. 198, 99–122 (1972) · Zbl 0229.60049 · doi:10.1007/BF01432281
[15] B. Pass, On a class of optimal transportation problems with infinitely many marginals. SIAM J. Math. Anal. 45 (4), 2557–2575 (2013) · Zbl 1278.49031 · doi:10.1137/120881427
[16] V. Strassen, The existence of probability measures with given marginals. Ann. Math. Statist. 36, 423–439 (1965) · Zbl 0135.18701 · doi:10.1214/aoms/1177700153
[17] E. Wong, M. Zakai, Martingales and stochastic integrals for processes with a multi-dimensional parameter. Z. Wahrscheinlichkeitstheor. Verw. Geb. 29, 109–122 (1974) · Zbl 0282.60030 · doi:10.1007/BF00532559
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.