×

Shadow couplings. (English) Zbl 1484.60051

Summary: A classical result of Strassen asserts that given probabilities \(\mu , \nu\) on the real line which are in convex order, there exists a martingale coupling with these marginals, i.e. a random vector \((X_1,X_2)\) such that \(X_1\sim \mu\), \(X_2\sim \nu\) and \(\mathbb{E}[X_2|X_1]=X_1\). Remarkably, it is a non-trivial problem to construct particular solutions to this problem. Based on the concept of shadow for measures in convex order, we introduce a family of such martingale couplings, each of which admits several characterizations in terms of optimality properties/geometry of the support set/representation through a Skorokhod embedding. As a particular element of this family we recover the (left-)curtain martingale transport, which has recently been studied (see the first author et al. [Stochastic Processes Appl. 127, No. 9, 3005–3013 (2017; Zbl 1372.60059); the first author and N. Juillet, Ann. Probab. 44, No. 1, 42–106 (2016; Zbl 1348.49045); L. Campi et al., Finance Stoch. 21, No. 2, 471–486 (2017; Zbl 1369.91174); P. Henry-Labordère and N. Touzi, Finance Stoch. 20, No. 3, 635–668 (2016; Zbl 1369.91181)]) and which can be viewed as a martingale analogue of the classical monotone rearrangement. As another canonical element of this family we identify a martingale coupling that resembles the usual product coupling and appears as an optimizer in the general transport problem recently introduced by N. Gozlan et al. [J. Funct. Anal. 273, No. 11, 3327–3405 (2017; Zbl 1406.60032)]. In addition, this coupling provides an explicit example of a Lipschitz kernel, shedding new light on Kellerer’s proof of the existence of Markov martingales with specified marginals.

MSC:

60G42 Martingales with discrete parameter

References:

[1] Alfonsi, Aur\'{e}lien; Corbetta, Jacopo; Jourdain, Benjamin, Sampling of probability measures in the convex order by Wasserstein projection, Ann. Inst. Henri Poincar\'{e} Probab. Stat., 56, 3, 1706-1729 (2020) · Zbl 1469.60065 · doi:10.1214/19-AIHP1014
[2] Alibert, J.-J.; Bouchitt\'{e}, G.; Champion, T., A new class of costs for optimal transport planning, European J. Appl. Math., 30, 6, 1229-1263 (2019) · Zbl 1435.90143 · doi:10.1017/s0956792518000669
[3] Az\'{e}ma, Jacques; Yor, Marc, Une solution simple au probl\`eme de Skorokhod. S\'{e}minaire de Probabilit\'{e}s, XIII (Univ. Strasbourg, Strasbourg, 1977/78), Lecture Notes in Math. 721, 90-115 (1979), Springer, Berlin · Zbl 0414.60055
[4] Backhoff-Veraguas, J.; Beiglb\"{o}ck, M.; Pammer, G., Existence, duality, and cyclical monotonicity for weak transport costs, Calc. Var. Partial Differential Equations, 58, 6, Paper No. 203, 28 pp. (2019) · Zbl 1469.60125 · doi:10.1007/s00526-019-1624-y
[5] Beiglb\"{o}ck, Mathias; Cox, Alexander M. G.; Huesmann, Martin, Optimal transport and Skorokhod embedding, Invent. Math., 208, 2, 327-400 (2017) · Zbl 1371.60072 · doi:10.1007/s00222-016-0692-2
[6] Beiglb\"{o}ck, Mathias; Cox, Alexander M. G.; Huesmann, Martin, The geometry of multi-marginal Skorokhod Embedding, Probab. Theory Related Fields, 176, 3-4, 1045-1096 (2020) · Zbl 1469.60126 · doi:10.1007/s00440-019-00935-z
[7] Beiglb\"{o}ck, Mathias; Griessler, Claus, A land of monotone plenty, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19, 1, 109-127 (2019) · Zbl 1425.60043
[8] Beiglb\"{o}ck, Mathias; Henry-Labord\`ere, Pierre; Penkner, Friedrich, Model-independent bounds for option prices-a mass transport approach, Finance Stoch., 17, 3, 477-501 (2013) · Zbl 1277.91162 · doi:10.1007/s00780-013-0205-8
[9] Beiglb\"{o}ck, Mathias; Henry-Labord\`ere, Pierre; Touzi, Nizar, Monotone martingale transport plans and Skorokhod embedding, Stochastic Process. Appl., 127, 9, 3005-3013 (2017) · Zbl 1372.60059 · doi:10.1016/j.spa.2017.01.004
[10] Beiglb\"{o}ck, Mathias; Huesmann, Martin; Stebegg, Florian, Root to Kellerer. S\'{e}minaire de Probabilit\'{e}s XLVIII, Lecture Notes in Math. 2168, 1-12 (2016), Springer, Cham · Zbl 1370.60083
[11] Beiglb\"{o}ck, Mathias; Juillet, Nicolas, On a problem of optimal transport under marginal martingale constraints, Ann. Probab., 44, 1, 42-106 (2016) · Zbl 1348.49045 · doi:10.1214/14-AOP966
[12] Beiglb\"{o}ck, Mathias; Nutz, Marcel; Touzi, Nizar, Complete duality for martingale optimal transport on the line, Ann. Probab., 45, 5, 3038-3074 (2017) · Zbl 1417.60032 · doi:10.1214/16-AOP1131
[13] Bouchard, Bruno; Nutz, Marcel, Arbitrage and duality in nondominated discrete-time models, Ann. Appl. Probab., 25, 2, 823-859 (2015) · Zbl 1322.60045 · doi:10.1214/14-AAP1011
[14] bruckerhoff2020shadow M. Br\"uckerhoff, M. Huesmann, and N. Juillet, Shadow martingales – a stochastic mass transport approach to the peacock problem, 2006.10478, 2020.
[15] Campi, Luciano; Laachir, Ismail; Martini, Claude, Change of numeraire in the two-marginals martingale transport problem, Finance Stoch., 21, 2, 471-486 (2017) · Zbl 1369.91174 · doi:10.1007/s00780-016-0322-2
[16] Dolinsky, Yan; Soner, H. Mete, Martingale optimal transport and robust hedging in continuous time, Probab. Theory Related Fields, 160, 1-2, 391-427 (2014) · Zbl 1305.91215 · doi:10.1007/s00440-013-0531-y
[17] Fathi, Max; Shu, Yan, Curvature and transport inequalities for Markov chains in discrete spaces, Bernoulli, 24, 1, 672-698 (2018) · Zbl 1396.60084 · doi:10.3150/16-BEJ892
[18] Galichon, A.; Henry-Labord\`ere, P.; Touzi, N., A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options, Ann. Appl. Probab., 24, 1, 312-336 (2014) · Zbl 1285.49012 · doi:10.1214/13-AAP925
[19] Gozlan, Nathael; Juillet, Nicolas, On a mixture of Brenier and Strassen theorems, Proc. Lond. Math. Soc. (3), 120, 3, 434-463 (2020) · Zbl 1469.60127 · doi:10.1112/plms.12302
[20] Gozlan, Nathael; Roberto, Cyril; Samson, Paul-Marie; Tetali, Prasad, Kantorovich duality for general transport costs and applications, J. Funct. Anal., 273, 11, 3327-3405 (2017) · Zbl 1406.60032 · doi:10.1016/j.jfa.2017.08.015
[21] Henry-Labord\`ere, Pierre; Tan, Xiaolu; Touzi, Nizar, An explicit martingale version of the one-dimensional Brenier’s theorem with full marginals constraint, Stochastic Process. Appl., 126, 9, 2800-2834 (2016) · Zbl 1346.60058 · doi:10.1016/j.spa.2016.03.003
[22] Henry-Labord\`ere, Pierre; Touzi, Nizar, An explicit martingale version of the one-dimensional Brenier theorem, Finance Stoch., 20, 3, 635-668 (2016) · Zbl 1369.91181 · doi:10.1007/s00780-016-0299-x
[23] Hirsch, Francis; Profeta, Christophe; Roynette, Bernard; Yor, Marc, Peacocks and associated martingales, with explicit constructions, Bocconi & Springer Series 3, xxxii+384 pp. (2011), Springer, Milan; Bocconi University Press, Milan · Zbl 1227.60001 · doi:10.1007/978-88-470-1908-9
[24] Hirsch, Francis; Roynette, Bernard, A new proof of Kellerer’s theorem, ESAIM Probab. Stat., 16, 48-60 (2012) · Zbl 1277.60041 · doi:10.1051/ps/2011164
[25] Hobson, David, The maximum maximum of a martingale. S\'{e}minaire de Probabilit\'{e}s, XXXII, Lecture Notes in Math. 1686, 250-263 (1998), Springer, Berlin · Zbl 0935.60028 · doi:10.1007/BFb0101762
[26] Hobson, David, The Skorokhod embedding problem and model-independent bounds for option prices. Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math. 2003, 267-318 (2011), Springer, Berlin · Zbl 1214.91113 · doi:10.1007/978-3-642-14660-2\_4
[27] Hobson, David; Klimmek, Martin, Robust price bounds for the forward starting straddle, Finance Stoch., 19, 1, 189-214 (2015) · Zbl 1396.91735 · doi:10.1007/s00780-014-0249-4
[28] Hobson, David; Neuberger, Anthony, Robust bounds for forward start options, Math. Finance, 22, 1, 31-56 (2012) · Zbl 1278.91162 · doi:10.1111/j.1467-9965.2010.00473.x
[29] Hobson, David; Norgilas, Dominykas, Robust bounds for the American put, Finance Stoch., 23, 2, 359-395 (2019) · Zbl 1411.91558 · doi:10.1007/s00780-019-00385-4
[30] Hobson, David G.; Norgilas, Dominykas, The left-curtain martingale coupling in the presence of atoms, Ann. Appl. Probab., 29, 3, 1904-1928 (2019) · Zbl 1427.60073 · doi:10.1214/18-AAP1450
[31] Jourdain, B.; Margheriti, W., A new family of one dimensional martingale couplings, Electron. J. Probab., 25, Paper No. 136, 50 pp. (2020) · Zbl 1470.60118 · doi:10.3390/mca25030049
[32] Juillet, Nicolas, Peacocks parametrised by a partially ordered set. S\'{e}minaire de Probabilit\'{e}s XLVIII, Lecture Notes in Math. 2168, 13-32 (2016), Springer, Cham · Zbl 1370.60082
[33] Juillet, Nicolas, Stability of the shadow projection and the left-curtain coupling, Ann. Inst. Henri Poincar\'{e} Probab. Stat., 52, 4, 1823-1843 (2016) · Zbl 1356.60067 · doi:10.1214/15-AIHP700
[34] Juillet, Nicolas, Martingales associated to peacocks using the curtain coupling, Electron. J. Probab., 23, Paper No. 8, 29 pp. (2018) · Zbl 1391.60096 · doi:10.1214/18-EJP138
[35] Kellerer, Hans G., Markov-Komposition und eine Anwendung auf Martingale, Math. Ann., 198, 99-122 (1972) · Zbl 0229.60049 · doi:10.1007/BF01432281
[36] Kellerer, Hans G., Integraldarstellung von Dilationen. Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Tech. Univ., Prague, 1971; dedicated to the memory of Anton\'{\i }n \v{S}pa\v{c}ek), 341-374 (1973), Academia, Prague · Zbl 0283.60079
[37] Low2 G. Lowther, Fitting martingales to given marginals, arXiv e-prints, Aug. 2008.
[38] Loynes, R. M., Stopping times on Brownian motion: Some properties of Root’s construction, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 16, 211-218 (1970) · Zbl 0193.45701 · doi:10.1007/BF00534597
[39] Monroe, Itrel, On embedding right continuous martingales in Brownian motion, Ann. Math. Statist., 43, 1293-1311 (1972) · Zbl 0267.60050 · doi:10.1214/aoms/1177692480
[40] Nutz, Marcel; Stebegg, Florian, Canonical supermartingale couplings, Ann. Probab., 46, 6, 3351-3398 (2018) · Zbl 1435.60030 · doi:10.1214/17-AOP1249
[41] Nutz, Marcel; Stebegg, Florian; Tan, Xiaowei, Multiperiod martingale transport, Stochastic Process. Appl., 130, 3, 1568-1615 (2020) · Zbl 1444.60033 · doi:10.1016/j.spa.2019.05.010
[42] Ob\l \'{o}j, Jan, The Skorokhod embedding problem and its offspring, Probab. Surv., 1, 321-390 (2004) · Zbl 1189.60088 · doi:10.1214/154957804100000060
[43] Rockafellar, R. T., Characterization of the subdifferentials of convex functions, Pacific J. Math., 17, 497-510 (1966) · Zbl 0145.15901
[44] Root, D. H., The existence of certain stopping times on Brownian motion, Ann. Math. Statist., 40, 715-718 (1969) · Zbl 0174.21902 · doi:10.1214/aoms/1177697749
[45] Rost, Hermann, The stopping distributions of a Markov Process, Invent. Math., 14, 1-16 (1971) · Zbl 0225.60025 · doi:10.1007/BF01418740
[46] St14 F. Stebegg, Model-independent pricing of asian options via optimal martingale transport, arXiv e-prints, Dec. 2014.
[47] Strassen, V., The existence of probability measures with given marginals, Ann. Math. Statist., 36, 423-439 (1965) · Zbl 0135.18701 · doi:10.1214/aoms/1177700153
[48] Villani, C\'{e}dric, Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338, xxii+973 pp. (2009), Springer-Verlag, Berlin · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.