×

Asymptotically periodic behavior of solutions to fractional non-instantaneous impulsive semilinear differential inclusions with sectorial operators. (English) Zbl 1494.34172


MSC:

34K37 Functional-differential equations with fractional derivatives
34K09 Functional-differential inclusions
26A33 Fractional derivatives and integrals
47N20 Applications of operator theory to differential and integral equations

References:

[1] Agarwal, P.; Ammi, M. S.; Asad, J., Existence and uniqueness results on time scales for fractional nonlocal thermistor problem in the conformable sense, Adv. Differ. Equ., 2021 (2021) · Zbl 1494.26067 · doi:10.1186/s13662-021-03319-7
[2] Sunarto, A.; Agarwal, P.; Sulaiman, J.; Chew, J. V.; Aruchunan, E., Iterative method for solving one-dimensional fractional mathematical physics model via quarter-sweep and PAOR, Adv. Differ. Equ., 2021 (2021) · Zbl 1494.65051 · doi:10.1186/s13662-021-03310-2
[3] Rezapour, S.; Etemad, S.; Tellab, B.; Agarwal, P.; Garcia Guirao, J. L., Numerical solutions caused by DGJIM and ADM methods for multi-term fractional BVP involving the generalized ψ-RL-operators, Symmetry, 13, 4 (2021) · doi:10.3390/sym13040532
[4] Agarwal, P.; Berdyshev, A.; Karimov, E., Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative, Results Math., 71, 3, 1235-1257 (2017) · Zbl 1375.35282 · doi:10.1007/s00025-016-0620-1
[5] Agarwal, R.; Hristova, S.; O’Regan, D., A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19, 2, 290-318 (2016) · Zbl 1343.34006 · doi:10.1515/fca-2016-0017
[6] Khan, H.; Jarad, F.; Abdeljawad, T.; Khan, A., A singular ABC-fractional differential equation with p-Laplacian operator, Chaos Solitons Fractals, 129, 56-61 (2019) · Zbl 1448.34047 · doi:10.1016/j.chaos.2019.08.017
[7] Khan, A.; Gomez-Aguilar, J. F.; Abdeljawad, T.; Khan, H., Stability and numerical simulation of a fractional order plant-nectar-pollinator model, Alex. Eng. J., 59, 1, 49-59 (2020) · doi:10.1016/j.aej.2019.12.007
[8] Khan, H.; Tunc, C.; Chen, W.; Khan, A., Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator, J. Appl. Anal. Comput., 8, 4, 1211-1226 (2018) · Zbl 1461.34009
[9] Diblik, J.; Fečkan, M.; Pospish, M., Non-existence of periodic solutions and S-asymptotically periodic solutions in fractional difference equations, Appl. Math. Comput., 257, 230-240 (2015) · Zbl 1338.39026
[10] Kang, Y. M.; Xie, Y.; Lu, J. C.; Jiang, J., On the non-existence of non-constant exact periodic solutions in a class of the Caputo fractional-order dynamical system, Nonlinear Dyn., 82, 1259-1267 (2015) · Zbl 1348.34017 · doi:10.1007/s11071-015-2232-9
[11] Kaslik, E.; Srivastava, H. M.; Trujillo, J. J., Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Anal., Real World Appl., 13, 1489-1497 (2012) · Zbl 1239.44001 · doi:10.1016/j.nonrwa.2011.11.013
[12] Ren, L.; Wang, J. R.; Fečkan, M., Asymptotically periodic behavior solutions for Caputo type fractional evolution equations, Fract. Calc. Appl. Anal., 27, 5, 1294-1312 (2018) · Zbl 1426.34020 · doi:10.1515/fca-2018-0068
[13] Tavazoel, M. S.; Haeri, M., A proof for nonexistence of periodic solutions in time invariant fractional order system, Automatica, 45, 1886-1890 (2009) · Zbl 1193.34006 · doi:10.1016/j.automatica.2009.04.001
[14] Wang, J.-R.; Fečkan, M.; Zhou, Y., Non-existence of periodic solutions and asymptotically periodic solutions of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 18, 246-256 (2013) · Zbl 1253.35204 · doi:10.1016/j.cnsns.2012.07.004
[15] Li, F.; Liang, J.; Wang, H., S-Asymptotically θ-periodic solution for fractional differential equations of order \(q\in (0,1)\) with finite delay, Adv. Differ. Equ., 2017 (2017) · Zbl 1422.34045 · doi:10.1186/s13662-017-1137-y
[16] Maghsoodi, S.; Neamaty, A., Existence and uniqueness of S-asymptotically w-periodic solution for fractional semilinear problem, J. Appl. Comput. Math., 8, 2, 1-5 (2019)
[17] Mu, J.; Zhou, Y.; Peng, L., Periodic solutions and S-asymptotically periodic solutions to fractional evolution equations, Discrete Dyn. Nat. Soc., 2017 (2017) · Zbl 1373.34014 · doi:10.1155/2017/1364532
[18] Cuevas, C.; César de Souza, J., S-Asymptotically T-periodic solutions of semilinear fractional integro-differential equations, Appl. Math. Lett., 22, 865-870 (2009) · Zbl 1176.47035 · doi:10.1016/j.aml.2008.07.013
[19] Ren, L.; Wang, J. R.; O’Regan, D., Asymptotically periodic behavior of solutions of fractional evolution equations of order \(1<\alpha <2 \), Math. Slovaca, 69, 599-610 (2019) · Zbl 1505.34019 · doi:10.1515/ms-2017-0250
[20] Wu, Z.-H., Asymptotic periodicity for a class of fractional integro-differential equations, J. Nonlinear Sci. Appl., 9, 506-517 (2016) · Zbl 1330.34026 · doi:10.22436/jnsa.009.02.16
[21] Wang, H.; Li, F., S-Asymptotically θ-periodic solutions for delay fractional differential equations with almost sectorial operator, Adv. Differ. Equ., 2016 (2016) · Zbl 1419.34040 · doi:10.1186/s13662-016-1043-8
[22] Rogovchenko, S. P.; Rogovchenko, Y. V., Asymptotic behavior of solutions of second order nonlinear differential equations, Port. Math., 57, 1, 17-33 (2000) · Zbl 0955.34035
[23] Wang, D.; Xiao, A.; Sun, S., Asymptotic behavior of solutions to time fractional neutral functional differential equations, J. Comput. Appl. Math., 382 (2021) · Zbl 1450.34051 · doi:10.1016/j.cam.2020.113086
[24] Abou-El-Ela, A. M.; Sadek, A.-R.; Mahmoud, A. M.; Farghaly, E. S., S-Asymptotic stability of solutions for a certain non-autonomous second-order stochastic delay differential equation, Turk. J. Math., 41, 576-584 (2017) · Zbl 1424.34274 · doi:10.3906/mat-1508-62
[25] Cuevas, C.; Pierri, M.; Sepulveda, A., Weighted S-asymptotically T-periodic solutions of a class of fractional differential equations, Adv. Differ. Equ., 2011 (2011) · Zbl 1210.34006 · doi:10.1155/2011/584874
[26] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[27] Hernandez, E.; O’Regan, D., On a new class of abstract impulsive differential equation, Proc. Am. Math. Soc., 141, 1641-1649 (2013) · Zbl 1266.34101 · doi:10.1090/S0002-9939-2012-11613-2
[28] Wang, J.-R.; Li, M.; O’Regan, D., Robustness for nonlinear evolution equation with non-instantaneous effects, Bull. Sci. Math., 159 (2020) · Zbl 1436.34058 · doi:10.1016/j.bulsci.2019.102827
[29] Wang, J.-R.; Ibrahim, A. G.; O’Regan, D., Global attracting solutions to Hilfer fractional non-instantaneous impulsive semilinear differential inclusions of Sobolev type and with nonlocal conditions, Nonlinear Anal., Model. Control, 24, 5, 775-803 (2019) · Zbl 07114670
[30] Wang, J.-R.; Ibrahim, A. G.; O’Regan, D., Hilfer type fractional differential switched inclusions with non-instantaneous impulsive and nonlocal conditions, Nonlinear Anal., Model. Control, 23, 6, 921-941 (2018) · Zbl 1421.34043 · doi:10.15388/NA.2018.6.7
[31] Wang, J.-R.; Ibrahim, A. G.; O’Regan, D.; Elmandouha, A. A., Nonlocal fractional semilinear differential inclusions with noninstantaneous impulses and of order \(1<\alpha <2\), J. Nonlinear Sci. Numer. Simul. (2020) · Zbl 07412527 · doi:10.1515/ijnsns-2019-0179
[32] Chalishajar, D. N.; Malar, K.; Ilavaras, R., Existence and controllability results of impulsive fractional neutral integro-differential equation with sectorial operator and infinite delay, AIP Conf. Proc., 2159 (2019) · doi:10.1063/1.5127471
[33] Wang, J.-R.; Ibrahim, A. G.; Fecčkan, M., Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces, Appl. Math. Comput., 257, 103-112 (2015) · Zbl 1338.34027
[34] Yan, Z., Approximate controllability of fractional impulsive partial neutral stochastic differential inclusions with state-dependent delay and fractional sectorial operators, Numer. Funct. Anal. Optim., 7, 12, 1590-1639 (2016) · Zbl 1359.34086 · doi:10.1080/01630563.2016.1240181
[35] Yan, Z.; Han, L., Optimality of fractional impulsive partial stochastic differential systems with analytic sectorial operators and controls, Optimization, 68, 4, 853-894 (2019) · Zbl 1412.34226 · doi:10.1080/02331934.2018.1556665
[36] Agarwal, P.; Agarwal, R. P.; Ruzhansky, M., Special Functions and Analysis of Differential Equations (2020), Boca Raton: Chapman & Hall/CRC, Boca Raton · Zbl 1441.33001 · doi:10.1201/9780429320026
[37] Agarwal, P.; Dragomir, S. S.; Jleli, M.; Samet, B., Advances in Mathematical Inequalities and Applications (2018), Basel: Birkhäuser, Basel · Zbl 1410.26009 · doi:10.1007/978-981-13-3013-1
[38] Agarwal, P.; Ramadan, M.; Osheba, H. S.; Chu, Y. M., Study of hybrid orthonormal functions method for solving second kind fuzzy Fredholm integral equations, Adv. Differ. Equ., 2020 (2020) · Zbl 1486.65288 · doi:10.1186/s13662-020-02985-3
[39] Ruzhansky, M.; Cho, Y. J.; Agarwal, P.; Area, I., Advances in Real and Complex Analysis with Applications (2017), Basel: Birkhäuser, Basel · Zbl 1381.00029 · doi:10.1007/978-981-10-4337-6
[40] Ali, M. A.; Abbas, M.; Budak, H.; Agarwal, P.; Murtaza, G.; Chu, Y. M., New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021) · Zbl 1487.26060 · doi:10.1186/s13662-021-03226-x
[41] Wu, S.; Li, C.; Agarwal, P., Relaxed modulus-based matrix splitting methods for the linear complementarity problem, Symmetry, 13, 3 (2021) · doi:10.3390/sym13030503
[42] Khan, H.; Khan, A.; Abdeljawad, T.; Alkhazzan, A., Existence results in Banach space for a nonlinear impulsive system, Adv. Differ. Equ., 2019 (2019) · Zbl 1458.34127 · doi:10.1186/s13662-019-1965-z
[43] Khan, H.; Tunc, C.; Khan, A., Green function’s properties and existence theorems for nonlinear singular-delay-fractional differential equations, Discrete Contin. Dyn. Syst., Ser. S, 13, 9, 2475-2487 (2020) · Zbl 1457.34116
[44] Khan, H.; Gomez-Aguillar, J. F.; Abdeljawad, T.; Khan, A., Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation, Fractals, 28, 8 (2020) · Zbl 1482.45005 · doi:10.1142/S0218348X20400484
[45] Shu, X. B.; Wang, Q., The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order \(1<\alpha <2\), Comput. Math. Appl., 64, 2100-2110 (2012) · Zbl 1268.34155 · doi:10.1016/j.camwa.2012.04.006
[46] Covitz, H.; Nadler, S. B., Multivalued contraction mapping in generalized metric spaces, Isr. J. Math., 8, 5-11 (1970) · Zbl 0192.59802 · doi:10.1007/BF02771543
[47] Casting, C.; Vladier, M., Convex Analysis and Measurable Multifunctions (1977), Berlin: Springer, Berlin · Zbl 0346.46038 · doi:10.1007/BFb0087685
[48] Hiai, F.; Umegaki, H., Integrals conditional expectation and martingales of multivalued functions, J. Multivar. Anal., 7, 149-182 (1977) · Zbl 0368.60006 · doi:10.1016/0047-259X(77)90037-9
[49] Kamenskii, M.; Obukhowskii, V.; Zecca, P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces (2001), Berlin: de Gruyter, Berlin · Zbl 0988.34001 · doi:10.1515/9783110870893
[50] Hernandez, E., Global solutions for abstract impulsive neutral differential equations, Math. Comput. Model., 53, 196-204 (2011) · Zbl 1211.34098 · doi:10.1016/j.mcm.2010.08.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.