×

Periodic solutions and \(S\)-asymptotically periodic solutions to fractional evolution equations. (English) Zbl 1373.34014

Consider the evolution equation \[ D_+^\alpha u(t) + Au(t)=f(t,u(t)),\quad t\in \mathbb{R}\tag{1} \] with Weyl-Liouville fractional derivative, where \(\alpha \in (0,1)\) and the lower terminal is \(-\infty\). \(X\) is a partially ordered Banach space, \(u: \mathbb{R} \to X, f: \mathbb{R}\times X \to X , A:D(A) \to X, D(A) \subset X\) and \(-A\) is the infinitesimal generator of a \(C_0\)-semigroup \(\{T(t) \}, t\geq0\). As an auxiliary equation the linear equation \[ D_+^\alpha u(t) + Au(t)=h(t) \] with \(h \in C(\mathbb{R},X)\) is considered.
A definition of mild solution of both considered equations is given trough Fourier transform. The existence and uniqueness of a mild solution of the linear equation are proved in the case when \(-A\) is the infinitesimal generator of an exponentially stable \(C_0\)-semigroup \(\{T(t) \}, t\geq0\) and the spectral radius of the resolvent operator is estimated. The obtained results are applied to the nonlinear equation (1) to establish some sufficient conditions for existence and uniqueness of periodic solutions, \(S\)-asymptotically periodic solutions and other types of bounded solutions. The mentioned results are proved in the case when \(f: \mathbb{R}\times X \to X\) satisfies some conditions based on the partial order in \(X\) or Lipschitz type conditions. In addition, two examples are given to illustrate the abstract results.

MSC:

34A08 Fractional ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34G20 Nonlinear differential equations in abstract spaces
34C11 Growth and boundedness of solutions to ordinary differential equations

References:

[1] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam, The Netherlands: Elsevier, Amsterdam, The Netherlands · Zbl 1092.45003
[2] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008
[3] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations. An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication (1993), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0789.26002
[4] Zhou, Y., Basic Theory of Fractional Differential Equations (2014), Singapore: World Scientific, Singapore · Zbl 1336.34001 · doi:10.1142/9069
[5] Zhou, Y.; Peng, L., On the time-fractional Navier—Stokes equations, Computers & Mathematics with Applications, 73, 6, 874-891 (2017) · Zbl 1409.76027 · doi:10.1016/j.camwa.2016.03.026
[6] Zhou, Y.; Peng, L., Weak solutions of the time-fractional Navier—Stokes equations and optimal control, Computers & Mathematics with Applications, 73, 6, 1016-1027 (2017) · Zbl 1412.35233 · doi:10.1016/j.camwa.2016.07.007
[7] Zhou, Y.; Zhang, L., Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems, Computers & Mathematics with Applications, 73, 6, 1325-1345 (2017) · Zbl 1409.35232 · doi:10.1016/j.camwa.2016.04.041
[8] Zhou, Y.; Vijayakumar, V.; Murugesu, R., Controllability for fractional evolution inclusions without compactness, Evolution Equations and Control Theory, 4, 4, 507-524 (2015) · Zbl 1335.34096 · doi:10.3934/eect.2015.4.507
[9] Mu, J.; Fan, H., Positive mild solutions of periodic boundary value problems for fractional evolution equations, Journal of Applied Mathematics, 2012 (2012) · Zbl 1244.34005 · doi:10.1155/2012/691651
[10] Area, I.; Losada, J.; Nieto, J. J., On fractional derivatives and primitives of periodic functions, Abstract and Applied Analysis, 2014 (2014) · Zbl 1337.26008 · doi:10.1155/2014/392598
[11] Kaslik, E.; Sivasundaram, S., Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Analysis. Real World Applications, 13, 3, 1489-1497 (2012) · Zbl 1239.44001 · doi:10.1016/j.nonrwa.2011.11.013
[12] Tavazoei, M. S.; Haeri, M., A proof for non existence of periodic solutions in time invariant fractional order systems, Automatica, 45, 8, 1886-1890 (2009) · Zbl 1193.34006 · doi:10.1016/j.automatica.2009.04.001
[13] Wang, J.; Feckan, M.; Zhou, Y., Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations, Communications in Nonlinear Science and Numerical Simulation, 18, 2, 246-256 (2013) · Zbl 1253.35204 · doi:10.1016/j.cnsns.2012.07.004
[14] Yazdani, M.; Salarieh, H., On the existence of periodic solutions in time-invariant fractional order systems, Automatica, 47, 8, 1834-1837 (2011) · Zbl 1226.93080 · doi:10.1016/j.automatica.2011.04.013
[15] Hilfer, R.; Klages, R.; Radons, G.; Sokolov, I. M., Threefold introduction to fractional derivatives, Anomalous Transport: Foundations and Applications, 17-74 (2008), New York, NY, USA: Wiley-VCH, New York, NY, USA
[16] Henríquez, H. R.; Pierri, M.; Táboas, P., On S-asymptotically \(ω\)-periodic functions on Banach spaces and applications, Journal of Mathematical Analysis and Applications, 343, 2, 1119-1130 (2008) · Zbl 1146.43004 · doi:10.1016/j.jmaa.2008.02.023
[17] Shu, X.-B.; Xu, F.; Shi, Y., S-asymptotically \(ω\)-positive periodic solutions for a class of neutral fractional differential equations, Applied Mathematics and Computation, 270, 768-776 (2015) · Zbl 1410.34203 · doi:10.1016/j.amc.2015.08.080
[18] Cuevas, C.; Cesar de Souza, J., Existence of S-asymptotically \(ω\)-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Analysis. Theory, Methods & Applications, 72, 3-4, 1683-1689 (2010) · Zbl 1197.47063 · doi:10.1016/j.na.2009.09.007
[19] Cuevas, C.; Souza, J., S-asymptotically image-periodic solutions of semilinear fractional integro-differential equations, Applied Mathematics Letters, 22, 865-870 (2009) · Zbl 1176.47035
[20] Alvarez-Pardo, E.; Lizama, C., Weighted pseudo almost automorphic mild solutions for two-term fractional order differential equations, Applied Mathematics and Computation, 271, 154-167 (2015) · Zbl 1410.34011 · doi:10.1016/j.amc.2015.08.132
[21] Lizama, C.; Poblete, F., Regularity of mild solutions for a class of fractional order differential equations, Applied Mathematics and Computation, 224, 803-816 (2013) · Zbl 1334.34016 · doi:10.1016/j.amc.2013.09.009
[22] Ponce, R., Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum, 87, 2, 377-392 (2013) · Zbl 1285.34071 · doi:10.1007/s00233-013-9474-y
[23] Lizama, C.; N’Guérékata, G. M., Bounded mild solutions for semilinear integro differential equations in Banach spaces, Integral Equations and Operator Theory, 68, 2, 207-227 (2010) · Zbl 1209.45007 · doi:10.1007/s00020-010-1799-2
[24] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44 (1983), New York, NY, USA: Springer, New York, NY, USA · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[25] Banasiak, J.; Arlotti, L., Perturbations of Positive Semigroups with Applications (2006), New York, NY, USA: Springer, New York, NY, USA · Zbl 1097.47038
[26] Wei, Z.; Li, Q.; Che, J., Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, Journal of Mathematical Analysis and Applications, 367, 1, 260-272 (2010) · Zbl 1191.34008 · doi:10.1016/j.jmaa.2010.01.023
[27] Shu, X.-B.; Lai, Y.; Chen, Y., The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Analysis. Theory, Methods & Applications, 74, 5, 2003-2011 (2011) · Zbl 1227.34009 · doi:10.1016/j.na.2010.11.007
[28] Wei, Z.; Dong, W.; Che, J., Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative, Nonlinear Analysis: Theory, Methods & Applications, 73, 10, 3232-3238 (2010) · Zbl 1202.26017 · doi:10.1016/j.na.2010.07.003
[29] Krägeloh, A. M., Two families of functions related to the fractional powers of generators of strongly continuous contraction semigroups, Journal of Mathematical Analysis and Applications, 283, 2, 459-467 (2003) · Zbl 1061.47038 · doi:10.1016/s0022-247x(03)00269-5
[30] Wang, R.-N.; Chen, D.-H.; Xiao, T.-J., Abstract fractional Cauchy problems with almost sectorial operators, Journal of Differential Equations, 252, 1, 202-235 (2012) · Zbl 1238.34015 · doi:10.1016/j.jde.2011.08.048
[31] Zolotarev, V. M., One-Dimensional Stable Distributions (1986), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0589.60015
[32] Wang, J.; Zhou, Y., A class of fractional evolution equations and optimal controls, Nonlinear Analysis: Real World Applications, 12, 1, 262-272 (2011) · Zbl 1214.34010 · doi:10.1016/j.nonrwa.2010.06.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.