×

Iterative method for solving one-dimensional fractional mathematical physics model via quarter-sweep and PAOR. (English) Zbl 1494.65051


MSC:

65L03 Numerical methods for functional-differential equations
34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals

References:

[1] Agarwal, P.; El-Sayed, A. A., Vieta-Lucas polynomials for solving a fractional-order mathematical physics model, Adv. Differ. Equ., 2020, 1 (2020) · Zbl 1487.65161 · doi:10.1186/s13662-020-03085-y
[2] Akram, T.; Abbas, M.; Ali, A.; Iqbal, A.; Baleanu, D., A numerical approach of a time fractional reaction-diffusion model with a non-singular kernel, Symmetry, 12, 10 (2020) · doi:10.3390/sym12101653
[3] Ali, K. K.; Osman, M. S.; Baskonus, H. M.; Elazabb, N. S.; İlhan, E., Analytical and numerical study of the HIV-1 infection of CD4+ T-cells conformable fractional mathematical model that causes acquired immunodeficiency syndrome with the effect of antiviral drug therapy, Math. Methods Appl. Sci. (2020) · Zbl 1531.92070 · doi:10.1002/mma.7022
[4] Aruchunan, E.; Muthuvalu, M. S.; Sulaiman, J., Quarter-sweep iteration concept on conjugate gradient normal residual method via second order quadrature-finite difference schemes for solving Fredholm integro-differential equations, Sains Malays., 44, 1, 139-146 (2015) · doi:10.17576/jsm-2015-4401-19
[5] Cen, Z.; Huang, J.; Le, A.; Xu, A., A second-order scheme for a time-fractional diffusion equation, Appl. Math. Lett., 90, 79-85 (2019) · Zbl 1414.65006 · doi:10.1016/j.aml.2018.10.016
[6] Demir, A.; Erman, S.; Özgür, B.; Korkmaz, E., Analysis of fractional partial differential equations by Taylor series expansion, Bound. Value Probl., 2013, 1 (2013) · Zbl 1290.35307 · doi:10.1186/1687-2770-2013-68
[7] Duo, S.; Ju, L.; Zhang, Y., A fast algorithm for solving the space-time fractional diffusion equation, Comput. Math. Appl., 75, 6, 1929-1941 (2018) · Zbl 1409.65053 · doi:10.1016/j.camwa.2017.04.008
[8] Fujita, Y., Cauchy problems of fractional order and stable processes, Jpn. J. Appl. Math., 7, 3, 459-476 (1990) · Zbl 0718.35026 · doi:10.1007/bf03167854
[9] Gao, W.; Veeresha, P.; Prakasha, D. G.; Baskonus, H. M., New numerical simulation for fractional Benney-Lin equation arising in falling film problems using two novel techniques, Numer. Methods Partial Differ. Equ., 37, 1, 210-243 (2021) · Zbl 1535.65250 · doi:10.1002/num.22526
[10] Gao, W.; Veeresha, P.; Prakasha, D. G.; Baskonus, H. M.; Yel, G., New numerical results for the time-fractional Phi-four equation using a novel analytical approach, Symmetry, 12, 3 (2020) · doi:10.3390/sym12030478
[11] Gao, W.; Yel, G.; Baskonus, H. M.; Cattani, C., Complex solitons in the conformable \((2+1)\)-dimensional Ablowitz-Kaup-Newell-Segur equation, AIMS Math., 5, 1, 507-521 (2020) · Zbl 1484.35377 · doi:10.3934/math.2020034
[12] Garrappa, R., Numerical solution of fractional differential equations: a survey and a software tutorial, Mathematics, 6, 2 (2018) · Zbl 06916890 · doi:10.3390/math6020016
[13] Gong, C.; Bao, W.; Tang, G.; Jiang, Y.; Liu, J., Computational challenge of fractional differential equations and the potential solutions: a survey, Math. Probl. Eng., 2015 (2015) · Zbl 1394.65072 · doi:10.1155/2015/258265
[14] González-Olvera, M. A.; Torres, L.; Hernández-Fontes, J. V.; Mendoza, E., Time fractional diffusion equation for shipping water events simulation, Chaos Solitons Fractals, 143 (2021) · doi:10.1016/j.chaos.2020.110538
[15] Gunawardena, A. D.; Jain, S. K.; Snyder, L., Modified iterative methods for consistent linear systems, Linear Algebra Appl., 154-156, 123-143 (1991) · Zbl 0731.65016 · doi:10.1016/0024-3795(91)90376-8
[16] Hacksbusch, W., Iterative solution of large sparse systems of equations, Appl. Math. Sci. (1994) · Zbl 0789.65017 · doi:10.1007/978-1-4612-4288-8
[17] Hilfer, R., Foundations of fractional dynamics, Fractals, 3, 3, 549-556 (1995) · Zbl 0870.58041 · doi:10.1142/s0218348x95000485
[18] Hilfer, R., Fractional diffusion based on Riemann-Liouville fractional derivatives, J. Phys. Chem. B, 104, 16, 3914-3917 (2000) · doi:10.1021/jp9936289
[19] Jaradat, I.; Alquran, M.; Momani, S.; Baleanu, D., Numerical schemes for studying biomathematics model inherited with memory-time and delay-time, Alex. Eng. J., 59, 5, 2969-2974 (2020) · doi:10.1016/j.aej.2020.03.038
[20] Kumar, S.; Shaw, P. K.; Abdel-Aty, A.; Mahmoud, E. E., A numerical study on fractional differential equation with population growth model, Numer. Methods Partial Differ. Equ. (2020) · Zbl 1531.65091 · doi:10.1002/num.22684
[21] Langlands, T. A.M.; Henry, B. I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 2, 719-736 (2005) · Zbl 1072.65123 · doi:10.1016/j.jcp.2004.11.025
[22] Othman, M.; Abdullah, A. R., An efficient four points modified explicit group Poisson solver, Int. J. Comput. Math., 76, 2, 203-217 (2000) · Zbl 0970.65109 · doi:10.1080/00207160008805020
[23] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), Philadelphia: SIAM, Philadelphia · Zbl 1002.65042 · doi:10.1137/1.9780898718003
[24] Schultz, M. H., A generalization of the Lax equivalence theorem, Proc. Am. Math. Soc., 17, 5, 1034-1035 (1966) · Zbl 0184.35703 · doi:10.1090/s0002-9939-1966-0198262-1
[25] Sun, H.; Cao, W., A fast temporal second-order difference scheme for the time-fractional subdiffusion equation, Numer. Methods Partial Differ. Equ. (2020) · Zbl 07776047 · doi:10.1002/num.22612
[26] Sunarto, A.; Sulaiman, J., Computational algorithm PAOR for time-fractional diffusion equations, IOP Conf. Ser., Mater. Sci. Eng., 874 (2020) · doi:10.1088/1757-899x/874/1/012029
[27] Veeresha, P.; Baskonus, H. M.; Prakasha, D. G.; Gao, W.; Yel, G., Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena, Chaos Solitons Fractals, 133 (2020) · Zbl 1483.92007 · doi:10.1016/j.chaos.2020.109661
[28] Vui Lung, J. C.; Sulaiman, J., On quarter-sweep finite difference scheme for one-dimensional porous medium equations, Int. J. Appl. Math., 33, 3, 439-450 (2020) · doi:10.12732/ijam.v33i3.6
[29] Xu, Q.; Xu, Y., Extremely low order time-fractional differential equation and application in combustion process, Commun. Nonlinear Sci. Numer. Simul., 64, 135-148 (2018) · Zbl 1538.35456 · doi:10.1016/j.cnsns.2018.04.021
[30] Yang, X. J.; Gao, F., A new technology for solving diffusion and heat equations, Therm. Sci., 21, 1, 133-140 (2017) · doi:10.2298/tsci160411246y
[31] Yang, X. J.; Ragulskis, M.; Taha, T., A new general fractional-order derivative with Rabotnov fractional-exponential kernel, Therm. Sci., 23, 6, 3711-3718 (2019) · doi:10.2298/tsci180825254y
[32] Yeyios, A. K., A necessary condition for the convergence of the accelerated overrelaxation (AOR) method, J. Comput. Appl. Math., 26, 3, 371-373 (1989) · Zbl 0676.65021 · doi:10.1016/0377-0427(89)90309-9
[33] Zwillinger, D., Handbook of Differential Equations (1997), San Diego: Academic Press, San Diego · Zbl 0678.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.