×

The symmetric coalescent and Wright-Fisher models with bottlenecks. (English) Zbl 1492.60269

Summary: We define a new class of \(\Xi\)-coalescents characterized by a possibly infinite measure over the nonnegative integers. We call them symmetric coalescents since they are the unique family of exchangeable coalescents satisfying a symmetry property on their coagulation rates: they are invariant under any transformation that consists of moving one element from one block to another without changing the total number of blocks. We illustrate the diversity of behaviors of this family of processes by introducing and studying a one parameter subclass, the \((\beta ,S)\)-coalescents. We also embed this family in a larger class of \(\Xi\)-coalescents arising as the limit genealogies of Wright-Fisher models with bottlenecks. Some convergence results rely on a new Skorokhod type metric, that induces the Meyer-Zheng topology, which allows us to study the scaling limit of non-Markovian processes using standard techniques.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)

References:

[1] Berestycki, N. (2009). Recent Progress in Coalescent Theory. Ensaios Matemáticos [Mathematical Surveys] 16. Sociedade Brasileira de Matemática, Rio de Janeiro. · Zbl 1204.60002
[2] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge. · Zbl 1107.60002 · doi:10.1017/CBO9780511617768
[3] Bertoin, J. and Le Gall, J.-F. (2003). Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 261-288. · Zbl 1023.92018 · doi:10.1007/s00440-003-0264-4
[4] BIRKNER, M., BLATH, J. and ELDON, B. (2013). An ancestral recombination graph for diploid populations with skewed offspring distribution. Genetics 193 255-290.
[5] BIRKNER, M., BLATH, J., MÖHLE, M., STEINRÜCKEN, M. and TAMS, J. (2009). A modified lookdown construction for the Ξ-Fleming-Viot process with mutation and populations with recurrent bottlenecks. ALEA Lat. Am. J. Probab. Math. Stat. 6 25-61. · Zbl 1162.60342
[6] BIRKNER, M., LIU, H. and STURM, A. (2018). Coalescent results for diploid exchangeable population models. Electron. J. Probab. 23 Paper No. 49, 44. · Zbl 1415.92122 · doi:10.1214/18-ejp175
[7] DELMAS, J.-F., DHERSIN, J.-S. and SIRI-JEGOUSSE, A. (2008). Asymptotic results on the length of coalescent trees. Ann. Appl. Probab. 18 997-1025. · Zbl 1141.60007 · doi:10.1214/07-AAP476
[8] DURRETT, R. (2012). Probability: Theory and Examples, 4th ed. Cambridge Series in Statistical and Probabilistic Mathematics 31. Cambridge Univ. Press, Cambridge. · Zbl 1202.60001 · doi:10.1017/CBO9780511779398
[9] ELDON, B. and WAKELEY, J. (2006). Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics 171 2621-2633.
[10] Etheridge, A. (2011). Some Mathematical Models from Population Genetics. Lecture Notes in Math. 2012. Springer, Heidelberg. · Zbl 1320.92003 · doi:10.1007/978-3-642-16632-7
[11] FREUND, F. (2020). Cannings models, population size changes and multiple-merger coalescents. J. Math. Biol. 80 1497-1521. · Zbl 1451.92252 · doi:10.1007/s00285-020-01470-5
[12] GAISER, F. and MÖHLE, M. (2016). On the block counting process and the fixation line of exchangeable coalescents. ALEA Lat. Am. J. Probab. Math. Stat. 13 809-833. · Zbl 1346.60124 · doi:10.30757/alea.v13-32
[13] GONZÁLEZ CASANOVA, A. and SPANÒ, D. (2018). Duality and fixation in Ξ-Wright-Fisher processes with frequency-dependent selection. Ann. Appl. Probab. 28 250-284. · Zbl 1391.92037 · doi:10.1214/17-AAP1305
[14] GRIFFITHS, R. C. and TAVARÉ, S. (1994). Sampling theory for neutral alleles in a varying environment. Philos. Trans. R. Soc. Lond. B 344 403-410.
[15] JAGERS, P. and SAGITOV, S. (2004). Convergence to the coalescent in populations of substantially varying size. J. Appl. Probab. 41 368-378. · Zbl 1049.92026 · doi:10.1239/jap/1082999072
[16] KAJ, I. and KRONE, S. M. (2003). The coalescent process in a population with stochastically varying size. J. Appl. Probab. 40 33-48. · Zbl 1019.92023 · doi:10.1239/jap/1044476826
[17] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). Springer, New York. · Zbl 0996.60001 · doi:10.1007/978-1-4757-4015-8
[18] Kingman, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235-248. · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4
[19] LI, H. and DURBIN, R. (2011). Inference of human population history from individual whole-genome sequences. Nature 475 493-496.
[20] LI, Z. and PU, F. (2012). Strong solutions of jump-type stochastic equations. Electron. Commun. Probab. 17 no. 33, 13. · Zbl 1260.60132 · doi:10.1214/ECP.v17-1915
[21] MEYER, P.-A. and ZHENG, W. A. (1984). Tightness criteria for laws of semimartingales. Ann. Inst. Henri Poincaré Probab. Stat. 20 353-372. · Zbl 0551.60046
[22] MÖHLE, M. (1999). The concept of duality and applications to Markov processes arising in neutral population genetics models. Bernoulli 5 761-777. · Zbl 0942.92020 · doi:10.2307/3318443
[23] MÖHLE, M. (2010). Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent. Stochastic Process. Appl. 120 2159-2173. · Zbl 1214.60037 · doi:10.1016/j.spa.2010.07.004
[24] MÖHLE, M. and SAGITOV, S. (2001). A classification of coalescent processes for haploid exchangeable population models. Ann. Probab. 29 1547-1562. · Zbl 1013.92029 · doi:10.1214/aop/1015345761
[25] NIWA, H. S., NASHIDA, K. and YANAGIMOTO, T. (2016). Reproductive skew in Japanese sardine inferred from DNA sequences. ICES J. Mar. Sci. 73 2181-2189.
[26] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870-1902. · Zbl 0963.60079 · doi:10.1214/aop/1022677552
[27] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 1116-1125. · Zbl 0962.92026 · doi:10.1017/s0021900200017903
[28] SAGITOV, S. (2003). Convergence to the coalescent with simultaneous multiple mergers. J. Appl. Probab. 40 839-854. · Zbl 1052.92044 · doi:10.1239/jap/1067436085
[29] SCHWEINSBERG, J. (2000). Coalescents with simultaneous multiple collisions. Electron. J. Probab. 5 Paper no. 12, 50. · Zbl 0959.60065 · doi:10.1214/EJP.v5-68
[30] SCHWEINSBERG, J. (2003). Coalescent processes obtained from supercritical Galton-Watson processes. Stochastic Process. Appl. 106 107-139. · Zbl 1075.60571
[31] SKOROHOD, A. V. (1956). Limit theorems for stochastic processes. Theory Probab. Appl. 1 261-290.
[32] STEINRÜCKEN, M., BIRKNER, M. and BLATH, J. (2013). Analysis of DNA sequence variation within marine species using beta-coalescents. Theor. Popul. Biol. 87 15-24. · Zbl 1296.92191
[33] TERHORST, J., KAMM, J. A. and SONG, Y. S. (2017). Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49 303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.