×

Convergence to the coalescent in populations of substantially varying size. (English) Zbl 1049.92026

A haploid population with non-overlaping generations and varying size is considered. It is supposed that the distributions of offspring numbers given the sizes of two consecutive generations are exchangeable. The population sizes \(M_r\) (\(r\) being the generation number) form a Markov chain with transition probabilities \(\pi_{ij}=Pr(M_r=x_j N\,|\,M_{r-1}=x_i N)\).
It is shown that the time-scaled ancestral process \(Z_{\lfloor Nt\rfloor}\) converges weakly to \(R_{\lambda t}\), where \(R_t\) is the Kingman coalescent, and \(\lambda\) is a scaling factor representing the effective population size \(Ne\approx N\lambda^{-1}\). Namely, \(\lambda=\sum_{ij} v_i\pi_{ij}\sigma^2_{ij}x_j x^{-2}_i\), where \(v_j=Pr(M_r=x_j N)\), \(\sigma_{ij}=b_{ij}-x_i/x_j\), \(b_{ij}\) is the limit of second order moments of the offspring number for one individual conditioned by \(M_r=x_j N\), \(M_{r-1}=x_i N\) as \(N\to\infty\). The result is applied to the classical Wright-Fisher model, to a population with stationary independent size fluctuations, and to some other examples.

MSC:

92D10 Genetics and epigenetics
92D15 Problems related to evolution
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
60F17 Functional limit theorems; invariance principles

References:

[1] Cannings, C. (1974). The latent roots of certain Markov chains arising in genetics: a new approach. I. Haploid models. Adv. Appl. Prob. 6, 260–290. · Zbl 0284.60064 · doi:10.2307/1426293
[2] Cannings, C. (1975). The latent roots of certain Markov chains arising in genetics: a new approach. II. Further haploid models. Adv. Appl. Prob. 7, 264–282. · Zbl 0339.60067 · doi:10.2307/1426077
[3] Donnelly, P. and Kurtz, T. G. (1999). Particle representations for measure-valued population models. Ann. Prob. 27, 166–205. · Zbl 0956.60081 · doi:10.1214/aop/1022677258
[4] Donnelly, P. and Tavaré, S. (1995). Coalescents and genealogical structure under neutrality. Annu. Rev. Genet. 29, 401–421.
[5] Durrett, R. (1996). Probability: Theory and Examples, 2nd edn. Duxbury, Belmont, CA. · Zbl 1202.60001
[6] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterisation and Convergence. John Wiley, New York. · Zbl 0592.60049
[7] Griffiths, R. C. and Tavaré, S. (1994). Sampling theory for neutral alleles in a varying environment. Phil. Trans. R. Soc. London B 344, 403–410.
[8] Iizuka, M. (2001). The effective size of fluctuating populations. Theoret. Pop. Biol. 59, 281–286. · Zbl 1043.92023 · doi:10.1006/tpbi.2001.1521
[9] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions. John Wiley, New York. · Zbl 0868.62048
[10] Kaj, I. and Krone, S. M. (2003). The coalescent process in a population with stochastically varying size. J. Appl. Prob. 40, 33–48. · Zbl 1019.92023 · doi:10.1239/jap/1044476826
[11] Kingman, J. F. C. (1982). Exchangeability and the evolution of large populations. In Exchangeability in Probability and Statistics , eds G. Koch and F. Spizzichino, North Holland, Amsterdam, pp. 97–112. · Zbl 0494.92011
[12] Kingman, J. F. C. (1982). On the genealogy of large populations. In Essays in Stastical Science (J. Appl. Prob. Spec. Vol 19A ), eds J. Gani and E. J. Hannan, Applied Probability Trust, Sheffield, pp. 27–43. · Zbl 0516.92011
[13] Möhle, M. (1998). Robustness results for the coalescent. J. Appl. Prob. 35, 438–447. · Zbl 0913.60022 · doi:10.1239/jap/1032192859
[14] Möhle, M. (2002). The coalescent in population models with time-inhomogeneous environment. Stoch. Process. Appl. 97, 199–227. · Zbl 1064.92034 · doi:10.1016/S0304-4149(01)00135-1
[15] Möhle, M. and Sagitov, S. (2003). Coalescent patterns in exchangeable diploid population models. J. Math. Biol. 47, 337–352. · Zbl 1054.92039 · doi:10.1007/s00285-003-0218-6
[16] Nordborg, M. and Krone, S. (2002). Separation of time scales and convergence to the coalescent in structured populations. In Modern Developments in Theoretical Population Genetics, eds M. Slatkin and M. Veuille, Oxford University Press, pp. 194–232.
[17] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36, 1116–1125. · Zbl 0962.92026 · doi:10.1239/jap/1032374759
[18] Sagitov, S. (2003). Convergence to the coalescent with simultaneous multiple mergers. J. Appl. Prob. 40, 839–854. · Zbl 1052.92044 · doi:10.1239/jap/1067436085
[19] Swoffold, D. L., Olsen, G. J., Waddell, P. J. and Hillis, D. M. (1996). Phylogeny reconstruction. In Molecular Systematics, 2nd edn, eds D. M. Hillis, C. Morritz and B. K. Mabel, Sinauer, Sunderland, MA, pp. 407–514.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.