×

Analysis of DNA sequence variation within marine species using Beta-coalescents. (English) Zbl 1296.92191

Summary: We apply recently developed inference methods based on general coalescent processes to DNA sequence data obtained from various marine species. Several of these species are believed to exhibit so-called shallow gene genealogies, potentially due to extreme reproductive behaviour, e.g. via Hedgecock’s “reproduction sweepstakes”. Besides the data analysis, in particular the inference of mutation rates and the estimation of the (real) time to the most recent common ancestor, we briefly address the question whether the genealogies might be adequately described by so-called Beta-coalescents (as opposed to Kingman’s coalescent), allowing multiple mergers of genealogies.The choice of the underlying coalescent model for the genealogy has drastic implications for the estimation of the above quantities, in particular the real-time embedding of the genealogy.

MSC:

92D20 Protein sequences, DNA sequences
92D10 Genetics and epigenetics

Software:

Mathematica

References:

[1] Árnason, E., Mitochondrial cytochrome \(b\) DNA variation in the high-fecundity Atlantic cod: trans-Atlantic clines and shallow gene genealogy, Genetics, 166, 1871-1885 (2004)
[2] Árnason, E.; Palsson, S., Mitochondrial cytochrome \(b\) DNA sequence variation of Atlantic cod, Gadus morhua, from Norway, Mol. Ecol., 5, 715-724 (1996)
[3] Árnason, E.; Palsson, S.; Petersen, P. H., Mitochondria1 cytochrome \(b\) DNA sequence variation of Atlantic cod, Gadus murhua, from the Baltic and the White Seas, Hereditas, 129, 37-43 (1998)
[4] Árnason, E.; Petersen, P. H.; Kristinsson, K.; Sigurgíslason, H., Mitochondrial cytochrome \(b\) DNA sequence variation of Atlantic cod from Iceland and Greenland, J. Fish Biol., 56, 409-430 (2000)
[6] Birkner, M.; Blath, J., Computing likelihoods for coalescents with multiple collisions in the infinitely-many-sites model, J. Math. Biol., 57, 3, 435-465 (2008) · Zbl 1274.92039
[7] Birkner, M.; Blath, J., Measure-valued diffusions, general coalescents and population genetic inference, (Trends in Stochastic Analysis. Trends in Stochastic Analysis, LMS, vol. 353 (2009), Cambridge University Press), 329-363 · Zbl 1170.92021
[8] Birkner, M.; Blath, J.; Capaldo, M.; Etheridge, A.; Möhle, M.; Schweinsberg, J.; Wakolbinger, A., Alpha-stable branching and Beta-coalescents, Electron. J. Probab., 10, 303-325 (2005) · Zbl 1066.60072
[9] Birkner, M.; Blath, J.; Möhle, M.; Steinrücken, M.; Tams, J., A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks, ALEA Lat. Am. J. Probab. Math. Stat., 6, 25-61 (2009) · Zbl 1162.60342
[10] Birkner, M.; Blath, J.; Steinrücken, M., Importance sampling for lambda coalescents in the infinitely many sites model, Theor. Popul. Biol., 79, 4, 155-173 (2011) · Zbl 1338.92073
[11] Boom, J. D.G.; Boulding, E. G.; Beckenbach, A. T., Mitochondrial DNA variation in introduced populations of Pacific oyster, Crassostrea gigas, in British Columbia, Can. J. Fish. Aquat. Sci., 51, 1608-1614 (1994)
[12] Cannings, C., The latent roots of certain Markov chains arising in genetics: a new approach, I, Haploid models, Adv. in Appl. Probab., 6, 260-290 (1974) · Zbl 0284.60064
[13] Cannings, C., The latent roots of certain Markov chains arising in genetics: a new approach, II, further Haploid models, Adv. in Appl. Probab., 7, 264-282 (1975) · Zbl 0339.60067
[14] Carr, S. M.; Marshall, H. D., Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome \(b\) gene of Atlantic cod (Gadus morhua) by the polymerase chain reaction, Can. J. Fish. Aquat. Sci., 48, 48-52 (1991)
[15] Carr, S. M.; Snellen, A. J.; Howse, K. A.; Wroblewski, J. S., Mitochondrial DNA sequence variation and genetic stock structure of Atlantic cod (Gadus morhua) from bay and offshore locations on the Newfoundland continental shelf, Mol. Ecol., 4, 79-88 (1995)
[16] Donnelly, P.; Kurtz, T., Particle representations for measure-valued population models, Ann. Probab., 27, 1, 166-205 (1999) · Zbl 0956.60081
[17] Durrett, R.; Schweinsberg, J., Approximating selective sweeps, Theor. Popul. Biol., 66, 129-138 (2004) · Zbl 1111.92042
[18] Durrett, R.; Schweinsberg, J., A coalescent model for the effect of advantageous mutations on the genealogy of a population, Stochastic Process. Appl., 115, 1628-1657 (2005) · Zbl 1082.92031
[19] Eldon, B., Estimation of parameters in large offspring number models and ratios of coalescence times, Theor. Popul. Biol., 80, 1, 16-28 (2011) · Zbl 1403.92137
[20] Eldon, B.; Wakeley, J., Coalescent processes when the distribution of offspring number among individuals is highly skewed, Genetics, 172, 2621-2633 (2006)
[21] Fu, X. Y.; Li, W.-H., Statistical tests of neutrality of mutations, Genetics, 133, 693-709 (1993)
[22] Griffiths, R. C.; Tavaré, S., Ancestral inference in population genetics, Statis. Sci., 9, 307-319 (1994) · Zbl 0955.62644
[23] Griffiths, R. C.; Tavaré, S., Unrooted genealogical tree probabilities in the infinitely-many-sites model, Math. Biosci., 127, 77-98 (1995) · Zbl 0818.92010
[24] Hedgecock, D., Does variance in reproductive success limit effective population size of marine organisms?, (Beaumont, A. R., Genetics and Evolution of Aquatic Organisms (1994), Chapman & Hall: Chapman & Hall London), 123-134
[25] Hedgecock, D.; Pudovkin, A. I., Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary, Bull. Mar. Sci., 87, 4, 971-1002 (2011)
[26] Hedrick, P. W., Large variance in reproductive success and the \(N_e / N\) ratio, Evolution, 59, 1596-1599 (2005)
[27] Johansen, S.; Bakke, I., The complete mitochondrial DNA sequence of atlantic cod (Gadus morhua): relevance to taxonomic studies among codfishes, Mol. Mar. Biol. Biotech., 5, 3, 203-214 (1996)
[28] Kingman, J. F.C., The coalescent, Stochastic Process. Appl., 13, 235-248 (1982) · Zbl 0491.60076
[29] Möhle, M.; Sagitov, S., A classification of coalescent processes for haploid exchangeable population models, Ann. Probab., 29, 1547-1562 (2001) · Zbl 1013.92029
[30] Pepin, P.; Carr, S. M., Morphological, meristic, and genetic analysis of stock structure in juvenile Atlantic cod (Gadus morhua) from the Newfoundland shelf, Can. J. Fish. Aquat. Sci., 50, 1924-1933 (1993)
[31] Pitman, J., Coalescents with multiple collisions, Ann. Probab., 27, 4, 1870-1902 (1999) · Zbl 0963.60079
[32] Pogson, G. H., Nucleotide polymorphism and natural selection at the pantophysin (Pan I) locus in the Atlantic cod, Gadus Morhua (L.), Genetics, 157, 317-330 (2001)
[33] Sagitov, S., The general coalescent with asynchronous mergers of ancestral lines, J. Appl. Probab., 36, 4, 1116-1125 (1999) · Zbl 0962.92026
[34] Schweinsberg, J., Coalescent processes obtained from supercritical Galton-Watson processes, Stochastic Process. Appl., 106, 107-139 (2003) · Zbl 1075.60571
[35] Sigurgíslason, H.; Árnason, E., Extent of mitochondrial DNA sequence variation in Atlantic cod from the Faroe Islands: a resolution of gene genealogy, Heredity, 91, 557-564 (2003)
[36] Sjödin, P. I.; Kay, I.; Krone, S.; Lascoux, M.; Nordborg, M., On the meaning and existence of an effective population size, Genetics, 105, 437-460 (2005)
[38] Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 123, 585-595 (1989)
[39] Turner, T. F.; Wares, P.; Gold, J. R., Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish (Sciaenops ocellatus), Genetics, 162, 1329-1339 (2002)
[41] Wakeley, J.; Takahashi, T., Gene genealogies when the sample size exceeds the effective size of the population, Mol. Biol. Evol., 20, 208-213 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.