×

Path-dependent Hamilton-Jacobi equations with super-quadratic growth in the gradient and the vanishing viscosity method. (English) Zbl 1492.60183

Summary: The nonexponential Schilder-type theorem in [J. Backhoff-Veraguas et al., Ann. Appl. Probab. 30, No. 3, 1321–1367 (2020; Zbl 1472.60091)] is expressed as a convergence result for path-dependent partial differential equations with appropriate notions of generalized solutions. This entails a non-Markovian counterpart to the vanishing viscosity method. We show uniqueness of maximal subsolutions for path-dependent viscous Hamilton-Jacobi equations related to convex super-quadratic backward stochastic differential equations. We establish well-posedness for the Hamilton-Jacobi-Bellman equation associated to a Bolza problem of the calculus of variations with path-dependent terminal cost. In particular, uniqueness among lower semicontinuous solutions holds, and state constraints are admitted.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
35F21 Hamilton-Jacobi equations
35K10 Second-order parabolic equations
60F10 Large deviations
60H30 Applications of stochastic analysis (to PDEs, etc.)
49J52 Nonsmooth analysis

Citations:

Zbl 1472.60091

References:

[1] J.-P. Aubin and G. Haddad, History path dependent optimal control and portfolio valuation and management, Positivity, 6 (2002), pp. 331-358, https://doi.org/10.1023/A:1020244921138. · Zbl 1031.93092
[2] J. Backhoff-Veraguas, D. Lacker, and L. Tangpi, Nonexponential Sanov and Schilder theorems on Wiener space: BSDEs, Schrödinger problems and control, Ann. Appl. Probab., 30 (2020), pp. 1321-1367. · Zbl 1472.60091
[3] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Syst. Control Found. Appl., Birkhäuser Boston, Boston, MA, 1997, https://doi.org/10.1007/978-0-8176-4755-1. · Zbl 0890.49011
[4] E. Bayraktar and C. Keller, Path-dependent Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal., 275 (2018), pp. 2096-2161, https://doi.org/10.1016/j.jfa.2018.07.010. · Zbl 1401.35328
[5] J. Bernis and P. Bettiol, Solutions to the Hamilton-Jacobi equation for Bolza problems with discontinuous time dependent data, ESAIM Control Optim. Calc. Var., 26 (2020), 66, https://doi.org/10.1051/cocv/2019041. · Zbl 1448.49018
[6] J. Bernis and P. Bettiol, Solutions to the Hamilton-Jacobi equation for Bolza problems with state constraints and discontinuous time dependent data, in Large-Scale Scientific Computing, Lecture Notes in Comput. Sci. 11958, Springer, Cham, 2020, pp. 31-39. · Zbl 07223008
[7] P. Bettiol and R. B. Vinter, The Hamilton Jacobi equation for optimal control problems with discontinuous time dependence, SIAM J. Control Optim., 55 (2017), pp. 1199-1225, https://doi.org/10.1137/16M1073029. · Zbl 1366.49003
[8] G. Buttazzo and M. Belloni, A survey on old and recent results about the gap phenomenon in the calculus of variations, in Recent Developments in Well-Posed Variational Problems, Math. Appl. 331, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995, pp. 1-27. · Zbl 0852.49001
[9] O. Carja, The minimum time function for semilinear evolutions, SIAM J. Control Optim., 50 (2012), pp. 1265-1282, https://doi.org/10.1137/100799174. · Zbl 1246.49025
[10] L. Cesari, Optimization-Theory and Applications: Problems with Ordinary Differential Equations, Appl. Math. (N.Y.) 17, Springer-Verlag, New York, 1983, https://doi.org/10.1007/978-1-4613-8165-5. · Zbl 0506.49001
[11] A. Cosso, S. Federico, F. Gozzi, M. Rosestolato, and N. Touzi, Path-dependent equations and viscosity solutions in infinite dimension, Ann. Probab., 46 (2018), pp. 126-174, https://doi.org/10.1214/17-AOP1181. · Zbl 1516.35192
[12] A. Cosso and F. Russo, Strong-viscosity solutions: Classical and path-dependent PDEs, Osaka J. Math., 56 (2019), pp. 323-373, https://projecteuclid.org/euclid.ojm/1554278428. · Zbl 1428.35079
[13] G. Dal Maso and H. Frankowska, Value functions for Bolza problems with discontinuous Lagrangians and Hamilton-Jacobi inequalities, ESAIM Control Optim. Calc. Var., 5 (2000), pp. 369-393, https://doi.org/10.1051/cocv:2000114. · Zbl 0952.49024
[14] R. De Arcangelis, Some remarks on the identity between a variational integral and its relaxed functional, Ann. Univ. Ferrara Sez. VII (N.S.), 35 (1989), pp. 135-145 (1990). · Zbl 0715.49002
[15] S. Drapeau, G. Heyne, and M. Kupper, Minimal supersolutions of convex BSDEs, Ann. Probab., 41 (2013), pp. 3973-4001, https://doi.org/10.1214/13-AOP834. · Zbl 1284.60116
[16] S. Drapeau, M. Kupper, E. Rosazza Gianin, and L. Tangpi, Dual representation of minimal supersolutions of convex BSDEs, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), pp. 868-887, https://doi.org/10.1214/14-AIHP664. · Zbl 1341.60051
[17] S. Drapeau and C. Mainberger, Stability and Markov property of forward backward minimal supersolutions, Electron. J. Probab., 21 (2016), 41, https://doi.org/10.1214/16-EJP4276. · Zbl 1345.60049
[18] B. Dupire, Functional Itô calculus, Quant. Finance, 19 (2019), pp. 721-729. · Zbl 1420.91458
[19] I. Ekren, Viscosity solutions of obstacle problems for fully nonlinear path-dependent PDEs, Stochastic Process. Appl., 127 (2017), pp. 3966-3996, https://doi.org/10.1016/j.spa.2017.03.016. · Zbl 1373.35086
[20] I. Ekren, C. Keller, N. Touzi, and J. Zhang, On viscosity solutions of path dependent PDEs, Ann. Probab., 42 (2014), pp. 204-236, https://doi.org/10.1214/12-AOP788. · Zbl 1320.35154
[21] I. Ekren, N. Touzi, and J. Zhang, Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I, Ann. Probab., 44 (2016), pp. 1212-1253, https://doi.org/10.1214/14-AOP999. · Zbl 1375.35250
[22] I. Ekren, N. Touzi, and J. Zhang, Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II, Ann. Probab., 44 (2016), pp. 2507-2553, https://doi.org/10.1214/15-AOP1027. · Zbl 1394.35228
[23] I. Ekren and J. Zhang, Pseudo-Markovian viscosity solutions of fully nonlinear degenerate PPDEs, Probab. Uncertain. Quant. Risk, 1 (2016), 6, https://doi.org/10.1186/s41546-016-0010-3. · Zbl 1431.35256
[24] H. Frankowska, Optimal trajectories associated with a solution of the contingent Hamilton-Jacobi equation, Appl. Math. Optim., 19 (1989), pp. 291-311, https://doi.org/10.1007/BF01448202. · Zbl 0672.49023
[25] M. I. Gomoyunov, N. Y. Lukoyanov, and A. R. Plaksin, Path-dependent Hamilton-Jacobi equations: The minimax solutions revised, Appl Math. Optim., 84 (2021), pp. S1087-S1117, https://doi.org/10.1007/s00245-021-09794-4. · Zbl 1476.49032
[26] U. G. Haussmann, A probabilistic approach to the generalized Hessian, Math. Oper. Res., 17 (1992), pp. 411-443, https://doi.org/10.1287/moor.17.2.411. · Zbl 0777.49017
[27] U. G. Haussmann, Generalized solutions of the Hamilton-Jacobi equation of stochastic control, SIAM J. Control Optim., 32 (1994), pp. 728-743, https://doi.org/10.1137/S036301299222785X. · Zbl 0806.93057
[28] U. G. Haussmann and J.-P. Lepeltier, On the existence of optimal controls, SIAM J. Control Optim., 28 (1990), pp. 851-902, https://doi.org/10.1137/0328049. · Zbl 0712.49013
[29] H. Kaise, T. Kato, and Y. Takahashi, Hamilton-Jacobi partial differential equations with path-dependent terminal costs under superlinear Lagrangians, in Proceedings of the 23rd International Symposium on Mathematical Theory of Networks and Systems (MTNS2018), Hong Kong University of Science and Technology, Hong Kong, 2018, pp. 692-699.
[30] O. Kallenberg, Foundations of Modern Probability, 2nd ed., Probab. Appl. (N.Y.), Springer-Verlag, New York, 2002, https://doi.org/10.1007/978-1-4757-4015-8. · Zbl 0996.60001
[31] C. Keller, Viscosity solutions of path-dependent integro-differential equations, Stochastic Process. Appl., 126 (2016), pp. 2665-2718, https://doi.org/10.1016/j.spa.2016.02.014. · Zbl 1383.45004
[32] A. V. Kim, Functional Differential Equations: Application of \(i\)-Smooth Calculus, Math. Appl. 479, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999. · Zbl 0942.34056
[33] M. Kisielewicz, Differential Inclusions and Optimal Control, Math. Appl. (East European Ser.) 44, Kluwer Academic Publishers Group, Dordrecht, The Netherlands; PWN-Polish Scientific Publishers, Warsaw, Poland, 1991. · Zbl 0731.49001
[34] N. Y. Lukoyanov, On the properties of the value functional of a differential game with hereditary information, J. Appl. Math. Mech., 65 (2001), pp. 361-370, https://doi.org/10.1016/S0021-8928(01)00041-7. · Zbl 1070.49022
[35] N. Y. Lukoyanov, Functional Hamilton-Jacobi type equations in ci-derivatives for systems with distributed delays, Nonlinear Funct. Anal. Appl., 8 (2003), pp. 365-397. · Zbl 1085.49038
[36] J. Ma, Z. Ren, N. Touzi, and J. Zhang, Large deviations for non-Markovian diffusions and a path-dependent Eikonal equation, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), pp. 1196-1216, https://doi.org/10.1214/15-AIHP678. · Zbl 1351.35276
[37] A. Misztela, The value function representing Hamilton-Jacobi equation with Hamiltonian depending on value of solution, ESAIM Control Optim. Calc. Var., 20 (2014), pp. 771-802, https://doi.org/10.1051/cocv/2013083. · Zbl 1306.49042
[38] T. Pham and J. Zhang, Two person zero-sum game in weak formulation and path dependent Bellman-Isaacs equation, SIAM J. Control Optim., 52 (2014), pp. 2090-2121, https://doi.org/10.1137/120894907. · Zbl 1308.91029
[39] S. Plaskacz and M. Quincampoix, On representation formulas for Hamilton Jacobi’s equations related to calculus of variations problems, Topol. Methods Nonlinear Anal., 20 (2002), pp. 85-118, https://doi.org/10.12775/TMNA.2002.027. · Zbl 1021.49024
[40] Z. Ren, Viscosity solutions of fully nonlinear elliptic path dependent partial differential equations, Ann. Appl. Probab., 26 (2016), pp. 3381-3414, https://doi.org/10.1214/16-AAP1178. · Zbl 1372.35386
[41] Z. Ren, Perron’s method for viscosity solutions of semilinear path dependent PDEs, Stochastics, 89 (2017), pp. 843-867, https://doi.org/10.1080/17442508.2016.1215451. · Zbl 1394.60070
[42] Z. Ren and M. Rosestolato, Viscosity solutions of path-dependent PDEs with randomized time, SIAM J. Math. Anal., 52 (2020), pp. 1943-1979, https://doi.org/10.1137/18M122666X. · Zbl 1445.35207
[43] Z. Ren, N. Touzi, and J. Zhang, An overview of viscosity solutions of path-dependent PDEs, in Stochastic Analysis and Applications 2014, Springer Proc. Math. Stat. 100, Springer, Cham, 2014, pp. 397-453, https://doi.org/10.1007/978-3-319-11292-3_15. · Zbl 1384.35042
[44] Z. Ren, N. Touzi, and J. Zhang, Comparison of viscosity solutions of fully nonlinear degenerate parabolic path-dependent PDEs, SIAM J. Math. Anal., 49 (2017), pp. 4093-4116, https://doi.org/10.1137/16M1090338. · Zbl 1516.35194
[45] Z. Ren, N. Touzi, and J. Zhang, Comparison of viscosity solutions of semilinear path-dependent PDEs, SIAM J. Control Optim., 58 (2020), pp. 277-302, https://doi.org/10.1137/19M1239404. · Zbl 1429.35215
[46] A. I. Subbotin, Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA, 1995; translated from the Russian.
[47] N. N. Subbotina, The method of characteristics for Hamilton-Jacobi equations and applications to dynamical optimization, J. Math. Sci. (N.Y.), 135 (2006), pp. 2955-3091. · Zbl 1184.49032
[48] N. N. Subbotina, A. I. Subbotin, and V. E. Tret’jakov, Stochastic and deterministic control: Differential inequalities, Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform., 14 (1985), pp. 405-419, P1-P15 (with the Russian original). · Zbl 0605.90147
[49] X. Tan and N. Touzi, Optimal transportation under controlled stochastic dynamics, Ann. Probab., 41 (2013), pp. 3201-3240, https://doi.org/10.1214/12-AOP797. · Zbl 1283.60097
[50] R. Vinter, Optimal Control, reprint of 2000 ed., Modern Birkhäuser Classics, Birkhäuser Boston, Boston, MA, 2010, https://doi.org/10.1007/978-0-8176-8086-2. · Zbl 0952.49001
[51] W. A. Zheng, Tightness results for laws of diffusion processes application to stochastic mechanics, Ann. Inst. H. Poincaré Probab. Statist., 21 (1985), pp. 103-124, http://www.numdam.org/item?id=AIHPB_1985__21_2_103_0. · Zbl 0579.60050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.